ECO2030: Microeconomic Theory II, module 1 Lecture 12

Martin J. Osborne

Department of Economics University of Toronto

2018.12.6

Table of contents Extensive games

Perfect recall

Strategies

Pure strategies Mixed strategies

Behavioral strategies

Outcome-equivalence of mixed and behavioral strategies

Nash equilibrium

Beliefs and assessments
Weak sequential equilibrium

Example 1

Example 2

Example 3

Example 4

Sequential equilibrium

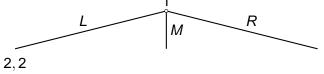
Example 3 revisited

Example 2 revisited Example 4 revisited

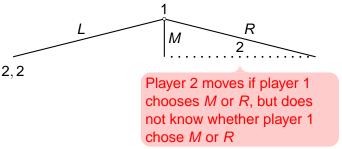
Extensive game with perfect information: players perfectly informed about past actions

- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions

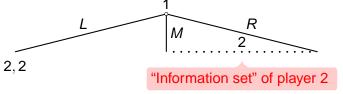
- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions
- Example:



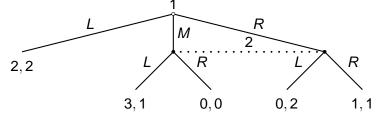
- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions
- Example:



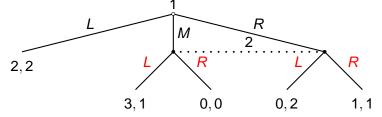
- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions
- Example:



- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions
- Example:

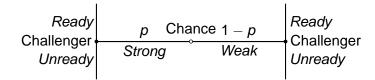


- Extensive game with perfect information: players perfectly informed about past actions
- Now consider games in which players are not perfectly informed about past actions
- Example:

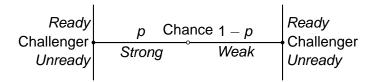


Set of actions available to player 2 at each history in her information set is the same (if not, she could deduce player 1's action from set of available actions)

Example with chance move:

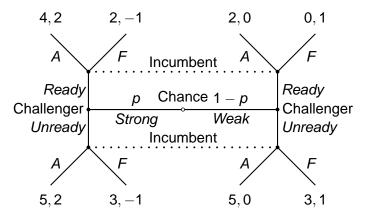


Example with chance move:

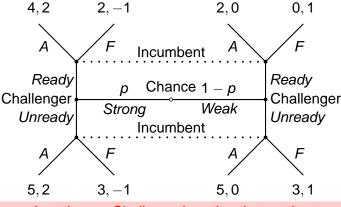


Challenger is Strong with probability p and Weak with probability 1 - p, and knows her type. In each case she has two actions, *Ready* and *Unready*.

Example with chance move:



Example with chance move:



Incumbent knows Challenger's action, but not her type

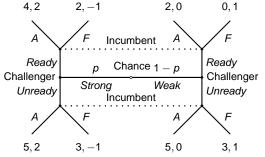
➤ To specify information, introduce collection (*I_i*)_{i∈N} of information partitions

- ▶ To specify information, introduce collection $(\mathcal{I}_i)_{i \in N}$ of information partitions
- \triangleright \mathcal{I}_i is a partition of the histories after which *i* moves

- ▶ To specify information, introduce collection $(\mathcal{I}_i)_{i \in N}$ of information partitions
- $ightharpoonup \mathcal{I}_i$ is a partition of the histories after which *i* moves
- Each member of the partition is an information set

- ▶ To specify information, introduce collection $(\mathcal{I}_i)_{i \in N}$ of information partitions
- $ightharpoonup \mathcal{I}_i$ is a partition of the histories after which *i* moves
- Each member of the partition is an information set
- ▶ If $h \in I_i$ and $h' \in I_i$, with $I_i \in \mathcal{I}_i$, then i cannot distinguish between h and h'

- ▶ To specify information, introduce collection $(\mathcal{I}_i)_{i \in N}$ of information partitions
- I_i is a partition of the histories after which i moves
- Each member of the partition is an information set
- ▶ If $h \in I_i$ and $h' \in I_i$, with $I_i \in \mathcal{I}_i$, then i cannot distinguish between h and h'



$$\begin{split} \mathcal{I}_{\text{Incumbent}} = \{ \{ & (\textit{Strong}, \textit{Ready}), (\textit{Weak}, \textit{Ready}) \}, \\ & \{ (\textit{Strong}, \textit{Unready}), (\textit{Weak}, \textit{Unready}) \} \} \end{split}$$

Definition

An extensive game consists of

► A finite set N (set of players)

Definition

- A finite set N (set of players)
- A set H of histories

Definition

- A finite set N (set of players)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)

Definition

- ► A finite set N (set of players)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)
- A function f_c that associates with every history h for which P(h) = c a probability measure $f_c(\cdot|h)$ on A(h), with each such probability measure independent of every other one

Definition

An extensive game consists of

- ► A finite set *N* (set of *players*)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)
- ▶ A function f_c that associates with every history h for which P(h) = c a probability measure $f_c(\cdot|h)$ on A(h), with each such probability measure independent of every other one

 $f_c(a|h)$ is the probability that action a is chosen after the history h

Definition

- A finite set N (set of players)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)
- ▶ A function f_c that associates with every history h for which P(h) = c a probability measure $f_c(\cdot|h)$ on A(h), with each such probability measure independent of every other one
- ► For each player $i \in N$ a partition \mathcal{I}_i of $\{h \in H : P(h) = i\}$ with A(h) = A(h') whenever h and h' are in the same member of the partition (i's information partition)

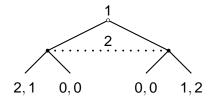
Definition

- A finite set N (set of players)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)
- Condition A(h) = A(h') for h and h' in the same member of the partition means that i cannot deduce, from set of actions available to her, whether history is h or h'
- ▶ For each player $i \in N$ a partition \mathcal{I}_i of $\{h \in H : P(h) = i\}$ with A(h) = A(h') whenever h and h' are in the same member of the partition (i's information partition)

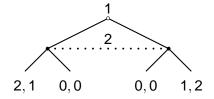
Definition

- ► A finite set *N* (set of *players*)
- A set H of histories
- A function P: H\Z(H) → N∪ {c} (player function, specifying player or chance, c, who moves after each nonterminal history)
- ▶ A function f_c that associates with every history h for which P(h) = c a probability measure $f_c(\cdot|h)$ on A(h), with each such probability measure independent of every other one
- ► For each player $i \in N$ a partition \mathcal{I}_i of $\{h \in H : P(h) = i\}$ with A(h) = A(h') whenever h and h' are in the same member of the partition (i's information partition)
- ► For each player $i \in N$ a preference relation \succeq_i on lotteries over Z(H) represented by expected value of payoff function

Example



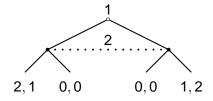
Example



Models same situation as

 strategic game in which players 1 and 2 choose actions simultaneously

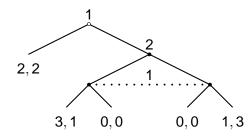
Example



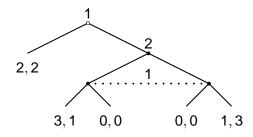
Models same situation as

- strategic game in which players 1 and 2 choose actions simultaneously
- extensive game with perfect information and simultaneous moves in which players 1 and 2 move simultaneously

Example

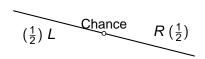


Example

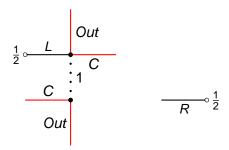


Models same situation as

 extensive game with perfect information and simultaneous moves in which player 1 moves and then players 1 and 2 move simultaneously

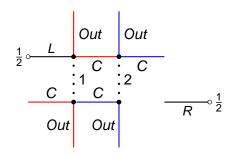


Example



Player 1 does not know whether she is the first mover or whether she is moving after the other players have moved

Example

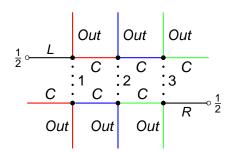


- Player 1 does not know whether she is the first mover or whether she is moving after the other players have moved
- Player 2 does not know whether she is moving after player
 1 and before player 3, or the other way around

Extensive games Strategies Nash equilibrium Beliefs and assessments Weak sequential equilibrium Sequential equilibrium

Extensive games with imperfect information

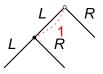
Example



- Player 1 does not know whether she is the first mover or whether she is moving after the other players have moved
- Player 2 does not know whether she is moving after player
 1 and before player 3, or the other way around
- Player 3 does not know whether she is the first mover or whether she is moving after the other players have moved

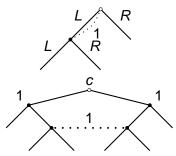
Examples

Examples



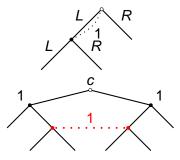
Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

Examples



Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

Examples



Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

When choosing at her last information set, player does not know move of chance, which she knew at start of game

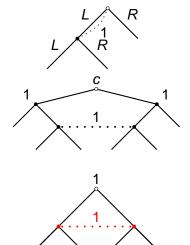
Examples



Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

When choosing at her last information set, player does not know move of chance, which she knew at start of game

Examples

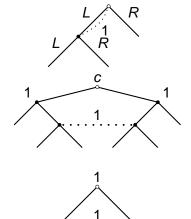


Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

When choosing at her last information set, player does not know move of chance, which she knew at start of game

When making her first choice, player does not know action she chose at start of game

Examples



Player does not know whether she is choosing action at start of game, or whether she has already chosen an action

When choosing at her last information set, player does not know move of chance, which she knew at start of game

When making her first choice, player does not know action she chose at start of game

These games have imperfect recall

Perfect recall

Game has perfect recall if at every point every player remembers whatever she knew in the past

Perfect recall

- Game has perfect recall if at every point every player remembers whatever she knew in the past
- Will restrict throughout to games with perfect recall

Denote by $A(I_i)$ the set of actions available to player i at the information set I_i

Denote by $A(I_i)$ the set of actions available to player i at the information set I_i

Remember that for every history in I_i the set of actions is the same

Denote by $A(I_i)$ the set of actions available to player i at the information set I_i

Remember that for every history in I_i the set of actions is the same

Definition

A pure strategy of player $i \in N$ in an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i), (\succsim_i) \rangle$ is a function that assigns an action in $A(I_i)$ to each information set $I_i \in \mathcal{I}_i$

Denote by $A(I_i)$ the set of actions available to player i at the information set I_i

Remember that for every history in I_i the set of actions is the same

Definition

A pure strategy of player $i \in N$ in an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i), (\succsim_i) \rangle$ is a function that assigns an action in $A(I_i)$ to each information set $I_i \in \mathcal{I}_i$

⇒ number of pure strategies of player i = product of numbers of actions at information sets of player i

Denote by $A(I_i)$ the set of actions available to player i at the information set I_i

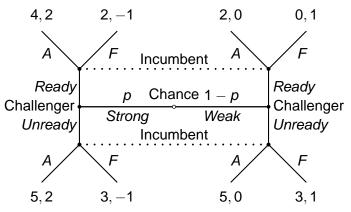
Remember that for every history in I_i the set of actions is the same

Definition

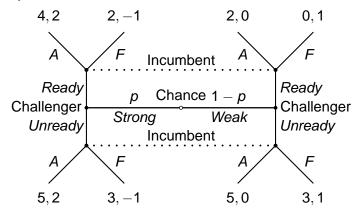
A pure strategy of player $i \in N$ in an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i), (\succsim_i) \rangle$ is a function that assigns an action in $A(I_i)$ to each information set $I_i \in \mathcal{I}_i$

- \Rightarrow number of pure strategies of player i = product of numbers of actions at information sets of player i
 - Given set of strategies for each player, can define strategic form of extensive game as before

Example

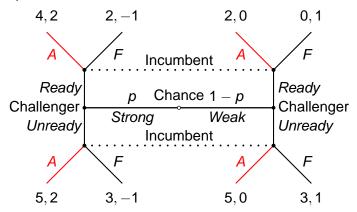


Example



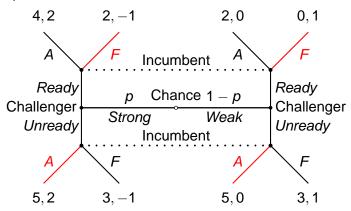
Pure strategy of incumbent specifies actions as each of her two information sets, so 4 pure strategies:

Example



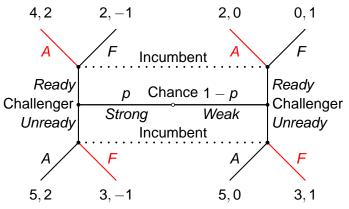
Pure strategy of incumbent specifies actions as each of her two information sets, so 4 pure strategies: AA (i.e. A at each information set),

Example



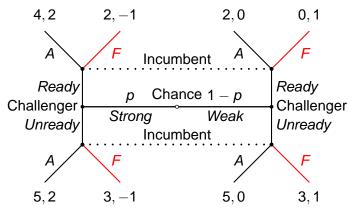
Pure strategy of incumbent specifies actions as each of her two information sets, so 4 pure strategies: *AA* (i.e. *A* at each information set), *AF* (i.e. *A* at bottom information set, *F* at top one),

Example



Pure strategy of incumbent specifies actions as each of her two information sets, so 4 pure strategies: AA (i.e. A at each information set), AF (i.e. A at bottom information set, F at top one), FA,

Example

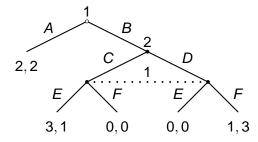


Pure strategy of incumbent specifies actions as each of her two information sets, so 4 pure strategies: *AA* (i.e. *A* at each information set), *AF* (i.e. *A* at bottom information set, *F* at top one), *FA*, *FF*

A mixed strategy of player *i* is a probability measure over player *i*'s set of pure strategies

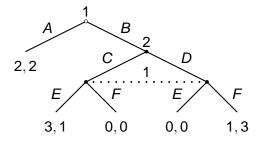
A mixed strategy of player *i* is a probability measure over player *i*'s set of pure strategies

Example



A mixed strategy of player *i* is a probability measure over player *i*'s set of pure strategies

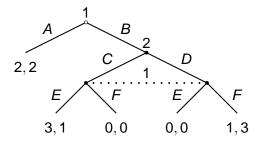
Example



▶ Player 1's pure strategies: AE, AF, BE, BF

A mixed strategy of player *i* is a probability measure over player *i*'s set of pure strategies

Example

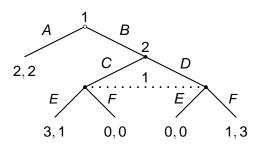


- Player 1's pure strategies: AE, AF, BE, BF
- Mixed strategy of player 1 is probability distribution (p_1, p_2, p_3, p_4) over these four strategies $(p_1 + p_2 + p_3 + p_4 = 1)$

A behavioral strategy of player i is a collection $(\beta_i(I_i))_{I_i \in \mathcal{I}_i}$ of independent probability measures, where $\beta_i(I_i)$ is a probability distribution over $A(I_i)$

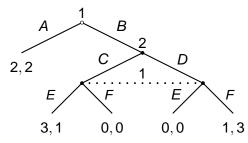
A behavioral strategy of player i is a collection $(\beta_i(I_i))_{I_i \in \mathcal{I}_i}$ of independent probability measures, where $\beta_i(I_i)$ is a probability distribution over $A(I_i)$

Example



A behavioral strategy of player i is a collection $(\beta_i(I_i))_{I_i \in \mathcal{I}_i}$ of independent probability measures, where $\beta_i(I_i)$ is a probability distribution over $A(I_i)$

Example

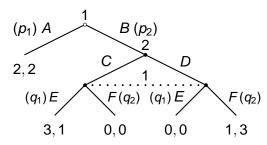


Behavioral strategy of player 1 is pair $((p_1, p_2), (q_1, q_2))$:

▶ p_1 and p_2 are probabilities assigned to A and B at start of game ($p_1 + p_2 = 1$)

A behavioral strategy of player i is a collection $(\beta_i(I_i))_{I_i \in \mathcal{I}_i}$ of independent probability measures, where $\beta_i(I_i)$ is a probability distribution over $A(I_i)$

Example



Behavioral strategy of player 1 is pair $((p_1, p_2), (q_1, q_2))$:

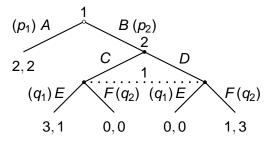
- ▶ p_1 and p_2 are probabilities assigned to A and B at start of game $(p_1 + p_2 = 1)$
- ▶ q_1 and q_2 are probabilities assigned to E and F at player 1's second information set $(q_1 + q_2 = 1)$

 Mixed and behavioral strategies are different ways of formulating a player's randomization

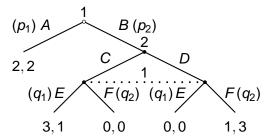
- Mixed and behavioral strategies are different ways of formulating a player's randomization
- However, they are closely related

- Mixed and behavioral strategies are different ways of formulating a player's randomization
- However, they are closely related
- Say two (mixed or behavioral) strategies of a player are outcome-equivalent if for every collection of pure strategies of the other players the two strategies induce the same probability distribution over terminal histories

Example

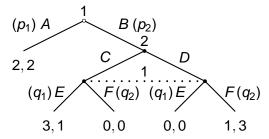


Example



Claim: For every behavioral strategy of player 1 there is a mixed strategy that is outcome-equivalent

Example



Claim: For every behavioral strategy of player 1 there is a mixed strategy that is outcome-equivalent

Behavioral

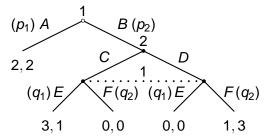
$$A: p_1$$

$$B: p_2 \Rightarrow$$

$$E: q_1$$

$$F: q_2$$

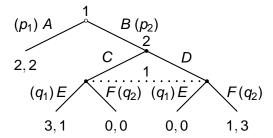
Example



Claim: For every behavioral strategy of player 1 there is a mixed strategy that is outcome-equivalent

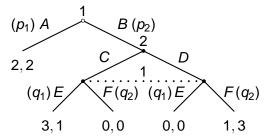
Behavioral		Mixed
A : p ₁ B : p ₂	\Rightarrow	AE : AF :
E : q ₁	,	<i>BE</i> :
F : q ₂		BF :

Example



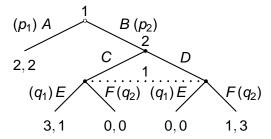
Behavioral		Mixed
A : p ₁ B : p ₂	\Rightarrow	AE : p ₁ q ₁ AF :
E : q ₁		BE:
F : q ₂		BF :

Example



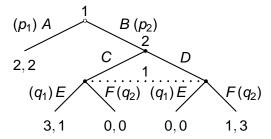
Behavioral		Mixed
A : p ₁ B : p ₂	\Rightarrow	AE : p ₁ q ₁ AF : p ₁ q ₂
E : q ₁	,	BE:
$F: q_2$		<i>BF</i> :

Example



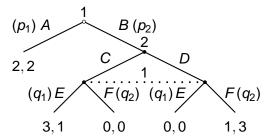
Behavioral		Mixed
A : p ₁ B : p ₂	\Rightarrow	AE : p ₁ q ₁ AF : p ₁ q ₂
E : q ₁ F : q ₂	7	BE : p ₂ q ₁ BF :

Example



Behavioral		Mixed
A : p ₁ B : p ₂	\Rightarrow	AE : p ₁ q ₁ AF : p ₁ q ₂
E : q ₁ F : q ₂	7	BE : p ₂ q ₁ BF : p ₂ q ₂

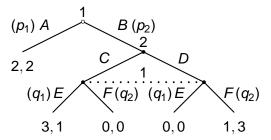
Example



Extensive games Strategies Nash equilibrium Beliefs and assessments Weak sequential equilibrium Sequential equilibrium

Mixed and behavioral strategies

Example

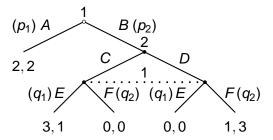


Claim: For every mixed strategy of player 1 there is a behavioral strategy that is outcome-equivalent

Mixed

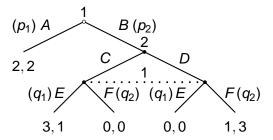
 $AE : r_1$ $AF : r_2 \Rightarrow$ $BE : r_3$ $BF : r_4$

Example



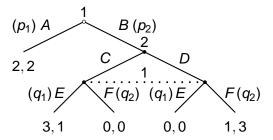
Mixed		Behavioral
AE: r ₁ AF: r ₂ BE: r ₃ BF: r ₄	\Rightarrow	A: B: E: F:

Example



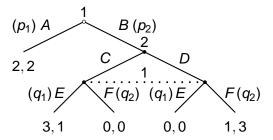
Mixed		Behavioral
AE : r ₁ AF : r ₂	\Rightarrow	$A: r_1 + r_2$ B:
BE : r ₃	\rightarrow	E :
BF : r ₄		F :

Example



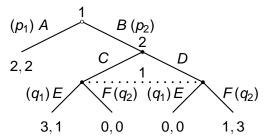
$$\begin{array}{lll} \text{Mixed} & \text{Behavioral} \\ AE: r_1 & & A: r_1 + r_2 \\ AF: r_2 & \Rightarrow & B: r_3 + r_4 \\ BF: r_4 & F: \end{array}$$

Example



Mixed Behavioral
$$AE: r_1$$
 $A: r_1 + r_2$ $B: r_3 + r_4$ $BF: r_4$ $F:$

Example



Mixed Behavioral
$$A : r_1 + r_2 \\ AF : r_2 \Rightarrow BE : r_3 \\ BF : r_4 \Rightarrow F : r_4/(r_3 + r_4)$$

Outcome-equivalence of mixed and behavioral strategies holds for all finite games with perfect recall

Outcome-equivalence of mixed and behavioral strategies holds for all finite games with perfect recall

Proposition

Let Γ be a finite extensive game with perfect recall.

For any behavioral strategy of a player in Γ there is an outcome-equivalent mixed strategy.

Outcome-equivalence of mixed and behavioral strategies holds for all finite games with perfect recall

Proposition

Let Γ be a finite extensive game with perfect recall.

- For any behavioral strategy of a player in Γ there is an outcome-equivalent mixed strategy.
- For any mixed strategy of a player in Γ there is an outcome-equivalent behavioral strategy.

Outcome-equivalence of mixed and behavioral strategies holds for all finite games with perfect recall

Proposition

Let Γ be a finite extensive game with perfect recall.

- For any behavioral strategy of a player in Γ there is an outcome-equivalent mixed strategy.
- For any mixed strategy of a player in Γ there is an outcome-equivalent behavioral strategy.

Subsequently we restrict attention to games with perfect recall and work with behavioral strategies

▶ For any profile of mixed strategies, let $O(\sigma)$ be the outcome of σ : the probability distribution over terminal histories generated by σ

▶ For any profile of mixed strategies, let $O(\sigma)$ be the outcome of σ : the probability distribution over terminal histories generated by σ

Definition

A Nash equilibrium in mixed strategies of an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i), (\succsim_i) \rangle$ is a profile σ of mixed strategies such that for all $i \in N$

 $O(\sigma_{-i}^*, \sigma_i^*) \succsim_i O(\sigma_{-i}^*, \sigma_i)$ for every mixed strategy σ_i of player i

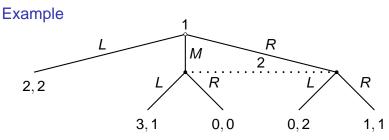
▶ For any profile of mixed strategies, let $O(\sigma)$ be the outcome of σ : the probability distribution over terminal histories generated by σ

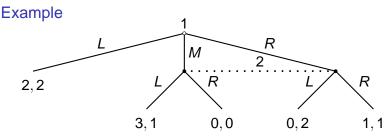
Definition

A Nash equilibrium in mixed strategies of an extensive game $\langle N, H, P, f_c, (\mathcal{I}_i), (\succsim_i) \rangle$ is a profile σ of mixed strategies such that for all $i \in N$

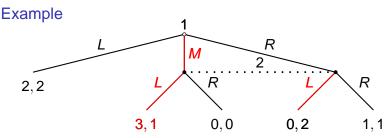
 $O(\sigma_{-i}^*, \sigma_i^*) \succsim_i O(\sigma_{-i}^*, \sigma_i)$ for every mixed strategy σ_i of player i

A Nash equilibrium in behavioral strategies is defined similarly

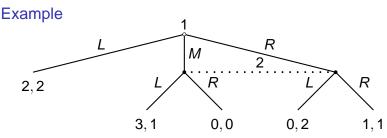




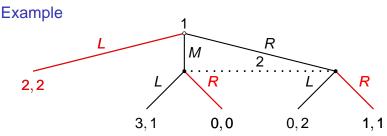
One Nash equilibrium:



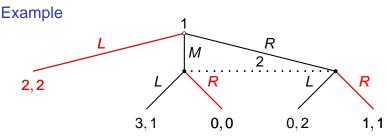
▶ One Nash equilibrium: (M, L)



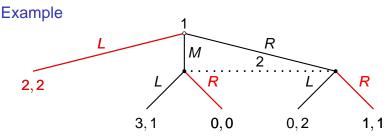
Another Nash equilibrium:



Another Nash equilibrium: (L, R)

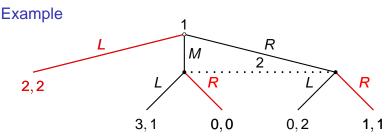


- Another Nash equilibrium: (L, R)
 - ▶ But if player 1 deviates to *M* or *R*, player 2's action *L* is better than *R* regardless of whether she believes player 1 chose *M* or *R*

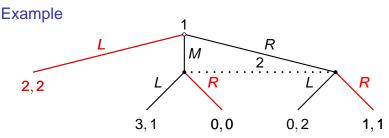


- Another Nash equilibrium: (L, R)
 - But if player 1 deviates to M or R, player 2's action L is better than R regardless of whether she believes player 1 chose M or R
 - ► Like incumbent's action *Fight* in NE (*Out*, *Fight*) of Entry game, player 2's strategy *R* is not optimal if player 2's information set is reached

Extensive games Strategies Nash equilibrium Beliefs and assessments Weak sequential equilibrium Sequential equilibrium

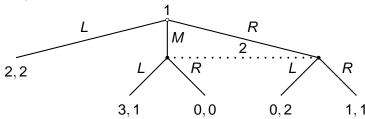


- Another Nash equilibrium: (L, R)
 - But if player 1 deviates to M or R, player 2's action L is better than R regardless of whether she believes player 1 chose M or R
 - ► Like incumbent's action *Fight* in NE (*Out*, *Fight*) of Entry game, player 2's strategy *R* is not optimal if player 2's information set is reached
 - ► This NE is subgame perfect: the game has no proper subgame

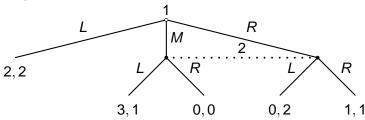


- Another Nash equilibrium: (L, R)
 - But if player 1 deviates to M or R, player 2's action L is better than R regardless of whether she believes player 1 chose M or R
 - ► Like incumbent's action *Fight* in NE (*Out*, *Fight*) of Entry game, player 2's strategy *R* is not optimal if player 2's information set is reached
 - ► This NE *is* subgame perfect: the game has no proper subgame
 - We need new refinement of NE

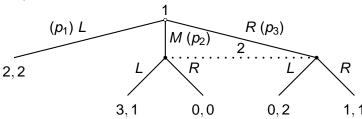
Example



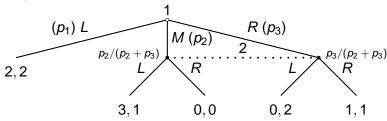
▶ In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R



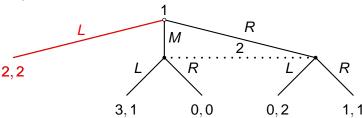
- In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R
- But for other payoffs, optimal action depends on her belief



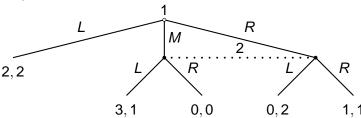
- In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R
- ▶ But for other payoffs, optimal action depends on her belief
- ▶ If player 1 chooses M and/or R with positive probability, player 2's belief can be derived from player 1's strategy



- In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R
- ▶ But for other payoffs, optimal action depends on her belief
- ▶ If player 1 chooses M and/or R with positive probability, player 2's belief can be derived from player 1's strategy



- In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R
- But for other payoffs, optimal action depends on her belief
- If player 1 chooses M and/or R with positive probability, player 2's belief can be derived from player 1's strategy
- ▶ But if player 1 chooses L, player 2's belief cannot be derived from player 1's strategy



- In this game, optimal action of player 2 is L regardless of her belief about whether player 1 chose M or R
- But for other payoffs, optimal action depends on her belief
- If player 1 chooses M and/or R with positive probability, player 2's belief can be derived from player 1's strategy
- ▶ But if player 1 chooses L, player 2's belief cannot be derived from player 1's strategy
 - Need to specify player 2's belief as part of equilibrium

Beliefs and assessments

A belief system for an extensive game is a function that assigns to every information set a probability measure over the set of histories in the information set

Beliefs and assessments

A belief system for an extensive game is a function that assigns to every information set a probability measure over the set of histories in the information set

Probability measure assigned to information set I represents beliefs of player P(I) who moves at I about probabilities of histories in I

Beliefs and assessments

A belief system for an extensive game is a function that assigns to every information set a probability measure over the set of histories in the information set

- Probability measure assigned to information set I represents beliefs of player P(I) who moves at I about probabilities of histories in I
- For belief system μ , probability measure assigned to I is $\mu(I)$ and the probability this measure assigns to history h is $\mu(I)(h)$

Beliefs and assessments

A belief system for an extensive game is a function that assigns to every information set a probability measure over the set of histories in the information set

- Probability measure assigned to information set I represents beliefs of player P(I) who moves at I about probabilities of histories in I
- ▶ For belief system μ , probability measure assigned to I is $\mu(I)$ and the probability this measure assigns to history h is $\mu(I)(h)$
- Restrict to games with perfect recall in which every information set contains finite number of histories

Beliefs and assessments

A belief system for an extensive game is a function that assigns to every information set a probability measure over the set of histories in the information set

- Probability measure assigned to information set I represents beliefs of player P(I) who moves at I about probabilities of histories in I
- For belief system μ , probability measure assigned to I is $\mu(I)$ and the probability this measure assigns to history h is $\mu(I)(h)$
- Restrict to games with perfect recall in which every information set contains finite number of histories

An assessment in an extensive game is pair (β, μ) where β is a profile of behavioral strategies and μ is a belief system

Sequential rationality

Each player's strategy is optimal given her beliefs

Sequential rationality

Each player's strategy is optimal given her beliefs

Consistency of beliefs

The belief system is consistent with the strategy profile

Sequential rationality

Each player's strategy is optimal given her beliefs

Consistency of beliefs

The belief system is consistent with the strategy profile

Sequential rationality

An assessment (β, μ) is sequentially rational if for every player i and every information set $I_i \in \mathcal{I}_i$ the strategy β_i of player i is a best response to the other players' strategies β_{-i} given i's beliefs $\mu(I_i)$ at I_i

Consistency requirement has several possible formulations

- Consistency requirement has several possible formulations
- Following condition is very weak

- Consistency requirement has several possible formulations
- Following condition is very weak

Weak consistency

An assessment (β, μ) is weakly consistent if for every information set I_i reached with positive probability given β , the probability assigned by μ to each history h^* in I_i is given by Bayes' rule:

$$\mu(I_i)(h^*) = \frac{\Pr(h^* \text{ according to } \beta)}{\sum_{h \in I_i} \Pr(h \text{ according to } \beta)}$$

- Consistency requirement has several possible formulations
- Following condition is very weak

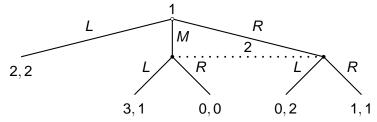
Weak consistency

An assessment (β, μ) is weakly consistent if for every information set I_i reached with positive probability given β , the probability assigned by μ to each history h^* in I_i is given by Bayes' rule:

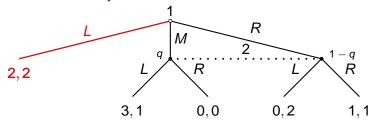
$$\mu(I_i)(h^*) = \frac{\Pr(h^* \text{ according to } \beta)}{\sum_{h \in I_i} \Pr(h \text{ according to } \beta)}$$

Note that this condition imposes *no* restriction of beliefs at information sets not reached if players follow β

Weak consistency

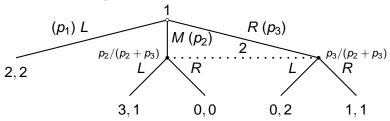


Weak consistency



An assessment in which player 1 chooses L and player 2 holds any belief at her information set is weakly consistent because given player 1's strategy, player 2's information set is not reached

Weak consistency

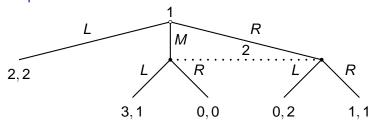


- An assessment in which player 1 chooses L and player 2 holds any belief at her information set is weakly consistent because given player 1's strategy, player 2's information set is not reached
- ▶ If $p_2 + p_3 > 0$ then weak consistency requires that player 2's belief assign probability $p_2/(p_2 + p_3)$ to M and probability $p_3/(p_2 + p_3)$ to R

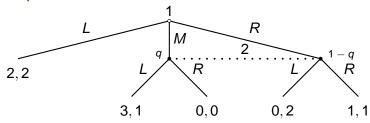
Definition

An assessment is a weak sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and weakly consistent

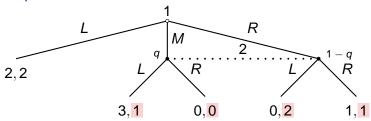
MWG use the term weak perfect Bayesian equilibrium



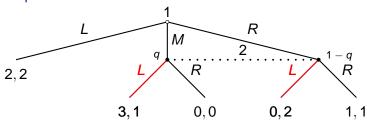
Example 1



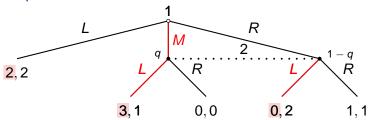
Start by looking at P2's choice



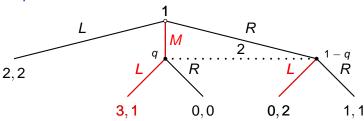
- Start by looking at P2's choice
- ► For any belief at P2's information set, only L is optimal



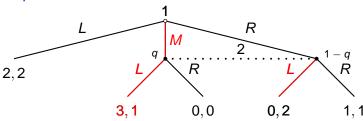
- Start by looking at P2's choice
- ► For any belief at P2's information set, only L is optimal
- ▶ So in any WSE P2 chooses L



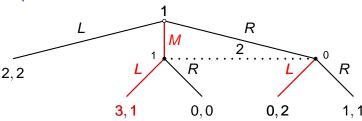
- Start by looking at P2's choice
- ► For any belief at P2's information set, only L is optimal
- So in any WSE P2 chooses L
- Given that P2 chooses L, P1's optimal action is M



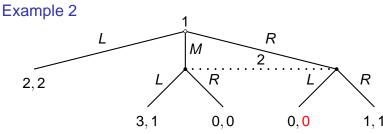
- Start by looking at P2's choice
- ► For any belief at P2's information set, only *L* is optimal
- So in any WSE P2 chooses L
- ▶ Given that P2 chooses L, P1's optimal action is M
- What are P2's beliefs at her information set?

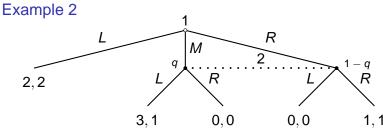


- Start by looking at P2's choice
- ► For any belief at P2's information set, only L is optimal
- So in any WSE P2 chooses L
- ▶ Given that P2 chooses L, P1's optimal action is M
- What are P2's beliefs at her information set?
- ▶ Weak consistency \Rightarrow q = 1

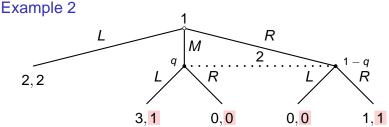


- Start by looking at P2's choice
- ► For any belief at P2's information set, only L is optimal
- So in any WSE P2 chooses L
- ▶ Given that P2 chooses L, P1's optimal action is M
- What are P2's beliefs at her information set?
- ▶ Weak consistency \Rightarrow q = 1
- ▶ So unique WSE, with strategies (M, L) and beliefs (1, 0)

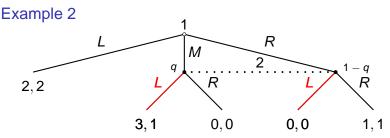




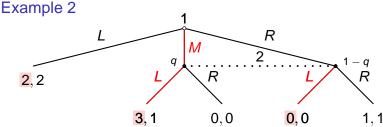
Start by looking at P2's choice



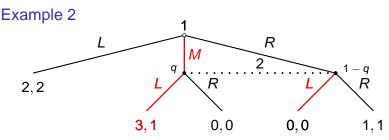
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then L is only optimal action; if $q < \frac{1}{2}$ then R is only optimal action; if $q = \frac{1}{2}$ then both L and R are optimal



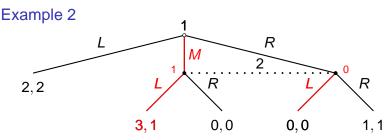
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1



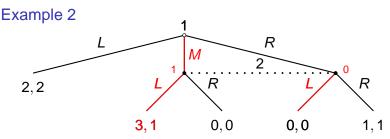
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses M



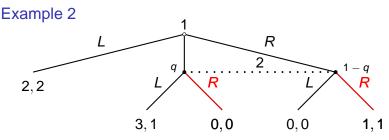
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs



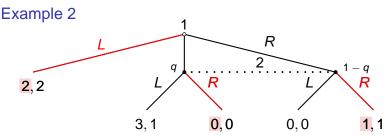
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs (1,0)



- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE



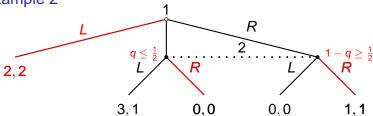
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then L is only optimal action; if $q < \frac{1}{2}$ then R is only optimal action; if $q = \frac{1}{2}$ then both L and R are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE
- ▶ If P2 chooses R then P1



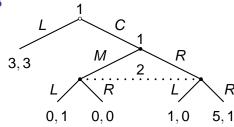
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then L is only optimal action; if $q < \frac{1}{2}$ then R is only optimal action; if $q = \frac{1}{2}$ then both L and R are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE
- If P2 chooses R then P1 chooses L

- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then L is only optimal action; if $q < \frac{1}{2}$ then R is only optimal action; if $q = \frac{1}{2}$ then both L and R are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE
- ▶ If P2 chooses R then P1 chooses $L \Rightarrow$ beliefs

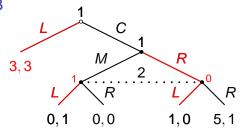
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE
- ▶ If P2 chooses R then P1 chooses $L \Rightarrow$ beliefs unrestricted by weak consistency; need $q \le \frac{1}{2}$ for R to be optimal



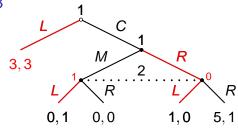
- Start by looking at P2's choice
- ▶ If $q > \frac{1}{2}$ then *L* is only optimal action; if $q < \frac{1}{2}$ then *R* is only optimal action; if $q = \frac{1}{2}$ then both *L* and *R* are optimal
- ▶ If P2 chooses L then P1 chooses $M \Rightarrow$ beliefs $(1,0) \Rightarrow L$ is optimal \Rightarrow assessment ((M,L),(1,0)) is WSE
- ▶ If P2 chooses R then P1 chooses $L \Rightarrow$ beliefs unrestricted by weak consistency; need $q \le \frac{1}{2}$ for R to be optimal \Rightarrow any assessment ((L, R), (q, 1 q)) with $q \le \frac{1}{2}$ is WSE



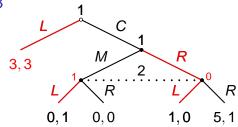
Example 3



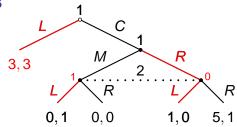
Consider assessment in which P1's strategy is (*L*, *R*), P2's strategy is *L*, and P2's belief is (1,0)



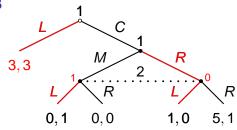
- Consider assessment in which P1's strategy is (L, R), P2's strategy is L, and P2's belief is (1,0)
- ▶ P1's strategy is optimal (payoffs to other strategies ≤ 1)



- Consider assessment in which P1's strategy is (L, R), P2's strategy is L, and P2's belief is (1,0)
- ▶ P1's strategy is optimal (payoffs to other strategies ≤ 1)
- P2's strategy is optimal given her belief

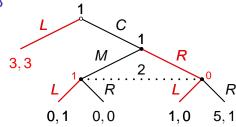


- Consider assessment in which P1's strategy is (L, R), P2's strategy is L, and P2's belief is (1,0)
- ▶ P1's strategy is optimal (payoffs to other strategies ≤ 1)
- P2's strategy is optimal given her belief
- P2's belief does not violate weak consistency because information set is not reached

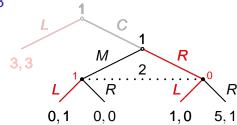


- Consider assessment in which P1's strategy is (*L*, *R*), P2's strategy is *L*, and P2's belief is (1,0)
- ▶ P1's strategy is optimal (payoffs to other strategies ≤ 1)
- ▶ P2's strategy is optimal given her belief
- P2's belief does not violate weak consistency because information set is not reached
- So assessment is WSE

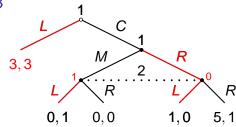
Example 3



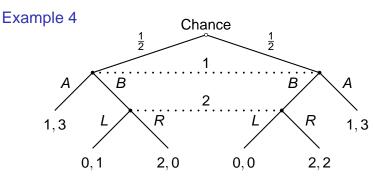
Is assessment an SPE?

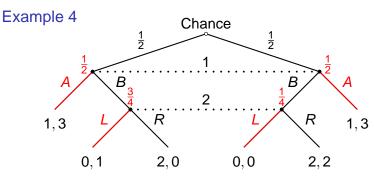


- Is assessment an SPE?
- No! In subgame following C, L is not optimal for P2 given P1's strategy

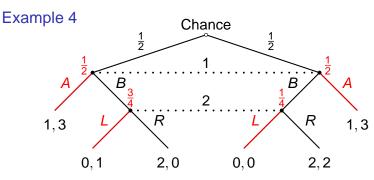


- Is assessment an SPE?
- No! In subgame following C, L is not optimal for P2 given P1's strategy
- Problem is that P2's belief in the WSE isn't derived from P1's strategy in the subgame—weak consistency doesn't require it to be because the subgame is not reached if P1 follows her strategy

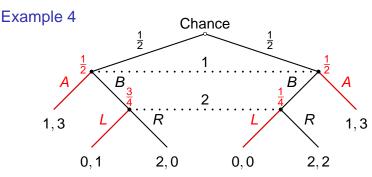




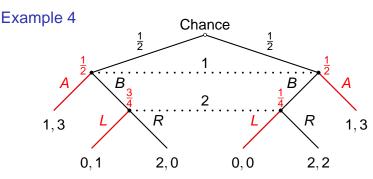
Consider indicated assessment



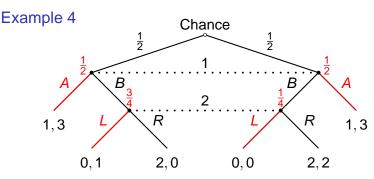
- Consider indicated assessment
- P1's strategy



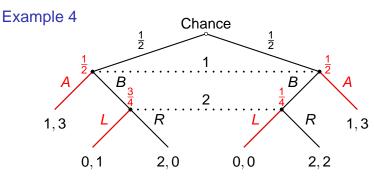
- Consider indicated assessment
- P1's strategy is optimal given her belief



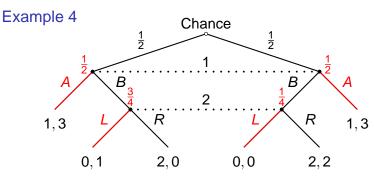
- Consider indicated assessment
- P1's strategy is optimal given her belief
- P2's strategy



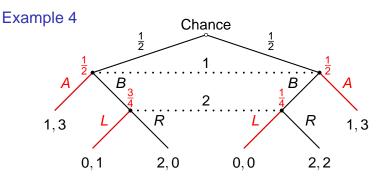
- Consider indicated assessment
- P1's strategy is optimal given her belief
- P2's strategy is optimal given her belief (payoff to *L* is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4}$, payoff to *R* is $\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2 = \frac{1}{2}$)



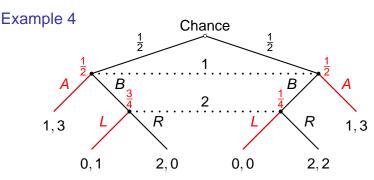
Belief at P1's information set



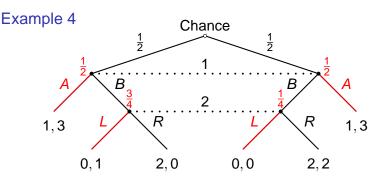
Belief at P1's information set is consistent with move of chance



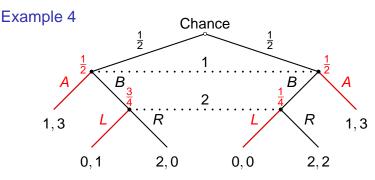
- Belief at P1's information set is consistent with move of chance
- Belief at P2's information set



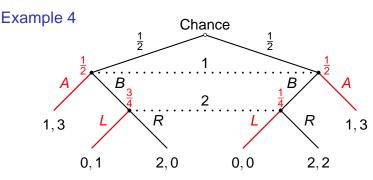
- Belief at P1's information set is consistent with move of chance
- Belief at P2's information set does not violate weak consistency because information set is not reached



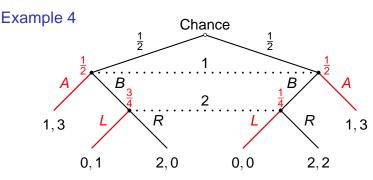
- Belief at P1's information set is consistent with move of chance
- Belief at P2's information set does not violate weak consistency because information set is not reached
- So assessment is WSE



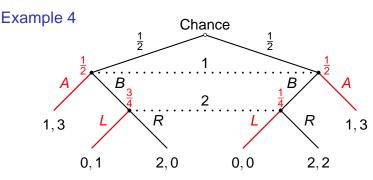
But belief at P2's information set cannot be derived from any alternative strategy of P1



- But belief at P2's information set cannot be derived from any alternative strategy of P1
 - ▶ If P1 uses strategy (p, 1 p) with $0 \le p < 1$ then belief at P2's information set is $(\frac{1}{2}, \frac{1}{2})$



- But belief at P2's information set cannot be derived from any alternative strategy of P1
 - ▶ If P1 uses strategy (p, 1 p) with $0 \le p < 1$ then belief at P2's information set is $(\frac{1}{2}, \frac{1}{2})$
- ▶ And for every belief at P2's information set that *is* derived from a strategy of P1, *R* is optimal for P2, so that *B*, not *A*, is optimal for P1



 Conclusion: Although assessment is WSE, it does not seem reasonable, and in no reasonable equilibrium does P1 choose A

 Examples 4 and 5 suggest we need to strengthen weak consistency and restrict beliefs at information sets not reached in equilibrium

- Examples 4 and 5 suggest we need to strengthen weak consistency and restrict beliefs at information sets not reached in equilibrium
- One possibility: require that there exist some sequence of assessments converging to (β, μ) in which every strategy β_i assigns positive probability to every action of player i and μ is derived from β by Bayes' rule

- Examples 4 and 5 suggest we need to strengthen weak consistency and restrict beliefs at information sets not reached in equilibrium
- One post i.e. strategies are "completely mixed" equence of assessments converging to (β, μ) in which every strategy β_i assigns positive probability to every action of player i and μ is derived from β by Bayes' rule

- Examples 4 and 5 suggest we need to strengthen weak consistency and restrict beliefs at information sets not reached in equilibrium
- One possibility: require that there exist some sequence of assessments converging to (β, μ) in which every strategy β_i assigns positive probability to every action of player i and μ is derived from β by Bayes' rule

Definition

An assessment (β,μ) is consistent if there is a sequence $((\beta^n,\mu^n))_{n=1}^\infty$ of assessments that converges to (β,μ) in Euclidian space and has the properties that each strategy profile β^n is completely mixed and that each belief system μ^n is derived from β^n using Bayes' rule

- Examples 4 and 5 suggest we need to strengthen weak consistency and restrict beliefs at information sets not reached in equilibrium
- One possibility: require that there exist some sequence of assessments converging to (β, μ) in which every strategy β_i assigns positive probability to every action of player i and μ is derived from β by Bayes' rule

Definition

An assessment (β,μ) is consistent if there is a sequence $((\beta^n,\mu^n))_{n=1}^\infty$ of assessments that converges to (β,μ) in Euclidian space and has the properties that each strategy profile β^n is completely mixed and that each belief system μ^n is derived from β^n using Bayes' rule

Note: The strategy profiles β^n in the sequence are not required to be optimal with respect to any beliefs

Definition

An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and consistent

Definition

An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and consistent

Proposition

 Every finite extensive game with perfect recall has a sequential equilibrium

Definition

An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and consistent

Proposition

- Every finite extensive game with perfect recall has a sequential equilibrium
- ▶ If (β, μ) is a sequential equilibrium then β is a Nash equilibrium

Definition

An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and consistent

Proposition

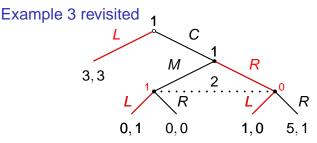
- Every finite extensive game with perfect recall has a sequential equilibrium
- ▶ If (β, μ) is a sequential equilibrium then β is a Nash equilibrium
- In an extensive game with perfect information (β, μ) is a sequential equilibrium if and only if β is a subgame perfect equilibrium

Definition

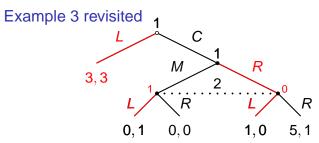
An assessment is a sequential equilibrium of a finite extensive game with perfect recall if it is sequentially rational and consistent

Proposition

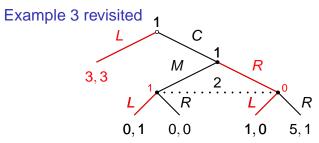
- Every finite extensive game with perfect recall has a sequential equilibrium
- ▶ If (β, μ) is a sequential equilibrium then β is a Nash equilibrium
- In an extensive game with perfect information (β, μ) is a sequential equilibrium if and only if β is a subgame perfect equilibrium
- In any extensive game with perfect recall the strategy profile in any sequential equilibrium is a subgame perfect equilibrium



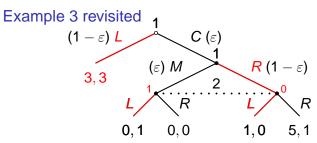
▶ Is this assessment, say (β, μ) , a sequential equilibrium?



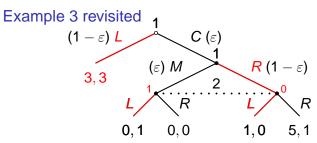
- Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ) ?



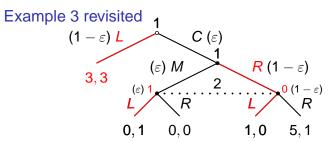
- Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁



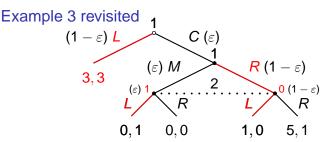
- Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁



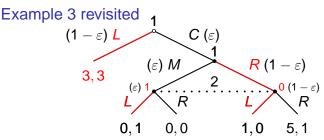
- Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁
- Then P2's belief, by Bayes' Law, assigns probability



- Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁
- Then P2's belief, by Bayes' Law, assigns probability ε to (C, M) and probability 1 − ε to (C, R)

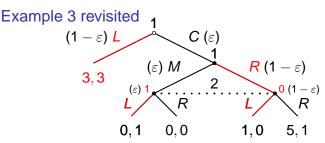


- ▶ Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ) ?
- Suppose P1's strategy is completely mixed and close to β₁
- ▶ Then P2's belief, by Bayes' Law, assigns probability ε to (C, M) and probability 1ε to (C, R)
- P2's optimal action given this belief is R, not L



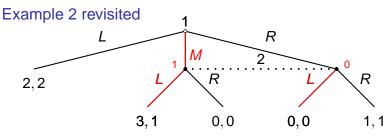
Conclusion

No sequence of assessments in which strategies are completely mixed and beliefs are derived from strategies using Bayes' Law converges to (β, μ)

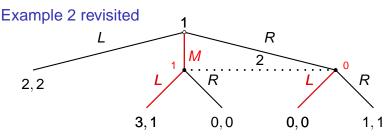


Conclusion

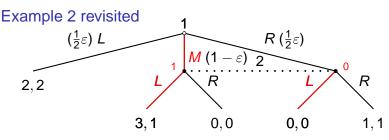
- No sequence of assessments in which strategies are completely mixed and beliefs are derived from strategies using Bayes' Law converges to (β, μ)
- ▶ So (β, μ) is *not* a sequential equilibrium



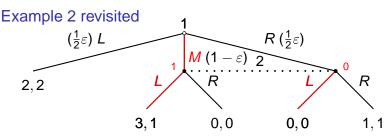
▶ Is this assessment, say (β, μ) , a sequential equilibrium?



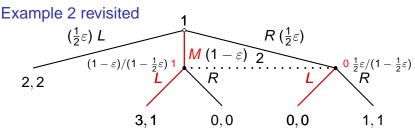
- ▶ Is this assessment, say (β, μ) , a sequential equilibrium?
- ▶ That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ) ?



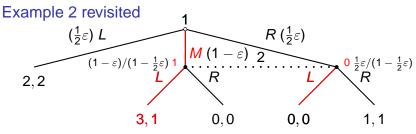
- ▶ Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁



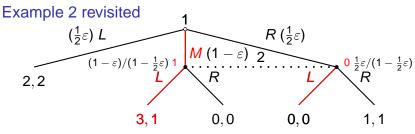
- ▶ Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁
- Then P2's belief assigns probability



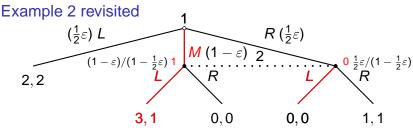
- ▶ Is this assessment, say (β, μ) , a sequential equilibrium?
- That is, is there a sequence of assessments in which the strategies are completely mixed and the beliefs are derived from strategies using Bayes' Law that converges to (β, μ)?
- Suppose P1's strategy is completely mixed and close to β₁
- ▶ Then P2's belief assigns probability $(1 \varepsilon)/(1 \varepsilon/2)$ to M and probability $(\varepsilon/2)/(1 \varepsilon/2)$ to R



P2's best response to this belief is

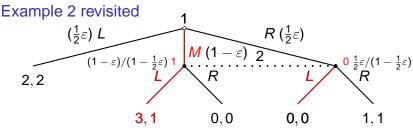


P2's best response to this belief is L



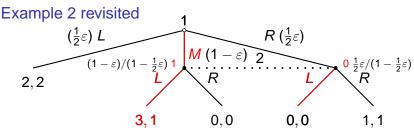
- P2's best response to this belief is L
- ▶ Thus the sequence $(\beta^n, \mu^n)_{n=1}^{\infty}$ of assessments in which

$$\beta_1^n(\varnothing) = (\frac{1}{2}\varepsilon^n, 1 - \varepsilon^n, \frac{1}{2}\varepsilon^n)$$



- P2's best response to this belief is L
- ▶ Thus the sequence $(\beta^n, \mu^n)_{n=1}^{\infty}$ of assessments in which

$$\beta_1^n(\varnothing) = (\frac{1}{2}\varepsilon^n, 1 - \varepsilon^n, \frac{1}{2}\varepsilon^n)$$
$$\beta_2^n(\{M, R\}) = (1 - \varepsilon^n, \varepsilon^n)$$



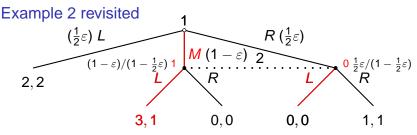
- P2's best response to this belief is L
- ▶ Thus the sequence $(\beta^n, \mu^n)_{n=1}^{\infty}$ of assessments in which

$$\beta_1^n(\varnothing) = (\frac{1}{2}\varepsilon^n, 1 - \varepsilon^n, \frac{1}{2}\varepsilon^n)$$

$$\beta_2^n(\{M, R\}) = (1 - \varepsilon^n, \varepsilon^n)$$

$$\mu^n(\{M, R\}) = ((1 - \varepsilon^n)/(1 - \frac{1}{2}\varepsilon^n), \frac{1}{2}\varepsilon^n/(1 - \frac{1}{2}\varepsilon^n))$$

satisfies conditions in definition of sequential equilibrium



- P2's best response to this belief is L
- ▶ Thus the sequence $(\beta^n, \mu^n)_{n=1}^{\infty}$ of assessments in which

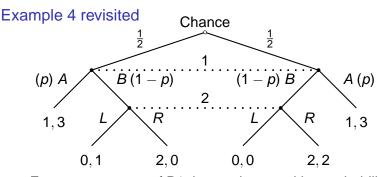
$$\beta_1^n(\varnothing) = (\frac{1}{2}\varepsilon^n, 1 - \varepsilon^n, \frac{1}{2}\varepsilon^n)$$

$$\beta_2^n(\{M, R\}) = (1 - \varepsilon^n, \varepsilon^n)$$

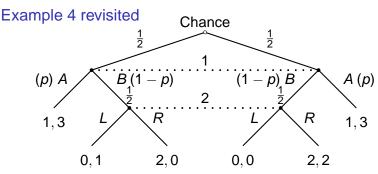
$$\mu^n(\{M, R\}) = ((1 - \varepsilon^n)/(1 - \frac{1}{2}\varepsilon^n), \frac{1}{2}\varepsilon^n/(1 - \frac{1}{2}\varepsilon^n))$$

satisfies conditions in definition of sequential equilibrium

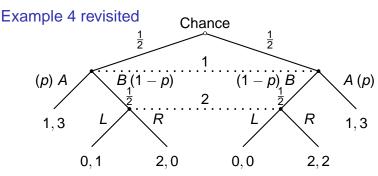
So indicated assessment satisfies conditions ⇒ assessment ((M, L), (1,0)) is sequential equilibrium



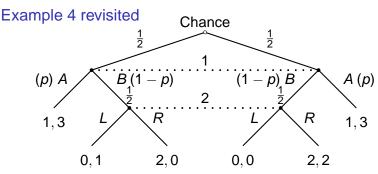
► For every strategy of P1 that assigns positive probability to B, belief at P2's information set derived by Bayes' Law is $(\frac{1}{2}, \frac{1}{2})$



- For every strategy of P1 that assigns positive probability to B, belief at P2's information set derived by Bayes' Law is $(\frac{1}{2}, \frac{1}{2})$
- For this belief, only R is optimal for P2



- For every strategy of P1 that assigns positive probability to B, belief at P2's information set derived by Bayes' Law is $(\frac{1}{2}, \frac{1}{2})$
- For this belief, only R is optimal for P2
- Given that P2 chooses R, only B is optimal for P1



- For every strategy of P1 that assigns positive probability to B, belief at P2's information set derived by Bayes' Law is $(\frac{1}{2}, \frac{1}{2})$
- For this belief, only R is optimal for P2
- Given that P2 chooses R, only B is optimal for P1
- ▶ So in any sequential equilibrium, P1 chooses B (and not A)

Summary

 Weak sequential equilibrium requires strategies to be optimal given beliefs and beliefs to be derived from strategies at information sets reached with positive probability when players follow strategies

Summary

- Weak sequential equilibrium requires strategies to be optimal given beliefs and beliefs to be derived from strategies at information sets reached with positive probability when players follow strategies
- Does not restrict beliefs at information sets not reached when players follow strategies

Summary

- Weak sequential equilibrium requires strategies to be optimal given beliefs and beliefs to be derived from strategies at information sets reached with positive probability when players follow strategies
- Does not restrict beliefs at information sets not reached when players follow strategies
- Examples show that absence of restriction at such information sets leads to equilibria that seem unreasonable

Summary

- Weak sequential equilibrium requires strategies to be optimal given beliefs and beliefs to be derived from strategies at information sets reached with positive probability when players follow strategies
- Does not restrict beliefs at information sets not reached when players follow strategies
- Examples show that absence of restriction at such information sets leads to equilibria that seem unreasonable
- Sequential equilibrium imposes a restriction that rules out the unreasonable equilibria in the examples, although the meaning of the condition is not very clear