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I When players are sufficiently patient, set of Nash
equilibrium payoff profiles of infinitely repeated game with
discounting is approximately equal to set of strictly
enforceable payoff profiles of stage game

I Equilibrium strategies involve “punishments” for players
who deviate from norm

I Are the Nash equilibria subgame perfect?
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SPE of infinitely repeated Prisoner’s Dilemma

Consider Nash equilibrium of infinitely repeated Prisoner’s
Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1

in which players’ strategies are

C : C
s∗1: -

{(C,D), (D,D)}
D : D

?

��{(C,C), (D,C)}
?

��
all outcomes

C : C
s∗2: -

{(D,C), (D,D)}
D : D

?

��{(C,C), (C,D)}
?

��
all outcomes

Is this strategy pair a SPE?
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I Thus strategy pair (s∗1, s
∗
2) is not SPE if δ > 1

3
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SPE of infinitely repeated Prisoner’s Dilemma

I Is there another strategy pair that generates the outcome
path ((C,C), (C,C), . . .) and is a SPE?

I Consider variant of strategy s∗i
I Grim strategy is

C : C -
all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

strategy switches to D after any history in
which either player deviated from (C,C)
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I P1 uses any other strategy in subgame
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⇒ outcome in subgame is either (C,D) or (D,D) in every

subsequent period
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C D
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D 4, 0 1, 1 C : C -

all outcomes
except (C,C)
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I Consider subgame following history (C,D)

I Assume that P2 uses grim strategy
I P1 uses strategy grim strategy in subgame
⇒ outcome in subgame is (D,D) in every subsequent period
⇒ discounted average payoff 1 to P1

I P1 uses any other strategy in subgame
⇒ outcome in subgame is either (C,D) or (D,D) in every

subsequent period
⇒ discounted average payoff of at most 1 to P1

I Thus strategy pair in which both players use grim strategy
is NE of subgame



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D

I Both strategies in state C



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D

I Both strategies in state C
⇒ (Grim strategy,Grim strategy) is NE if players are

sufficiently patient (by argument in last class)



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D

I Both strategies in state C
⇒ (Grim strategy,Grim strategy) is NE if players are

sufficiently patient (by argument in last class)
I Both strategies in state D



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D

I Both strategies in state C
⇒ (Grim strategy,Grim strategy) is NE if players are

sufficiently patient (by argument in last class)
I Both strategies in state D
⇒ (Grim strategy,Grim strategy) is NE (by argument for

subgame following (C,D))



Infinitely repeated games Finitely repeated games Dynamic games

SPE of infinitely repeated Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1 C : C -

all outcomes
except (C,C)

D : D
?

��{(C,C)}
?

��
all outcomes

I In every subgame, either both players’ strategies are in
state C or both players’ strategies are in state D

I Both strategies in state C
⇒ (Grim strategy,Grim strategy) is NE if players are

sufficiently patient (by argument in last class)
I Both strategies in state D
⇒ (Grim strategy,Grim strategy) is NE (by argument for

subgame following (C,D))

I So if players are sufficiently patient, (Grim strategy,
Grim strategy) is SPE, with outcome (C,C) in every period
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SPE of infinitely repeated Prisoner’s Dilemma

I In fact, every strictly enforceable payoff pair in Prisoner’s
Dilemma can be achieved in a SPE

I That is, set of payoffs to NEs is same as set of payoffs to
SPEs

I To show result, will use equivalence of SPEs and strategy
profiles satisfying one-deviation property in infinitely
repeated games with discounting

Proposition
A strategy profile is a subgame perfect equilibrium of a
δ-discounted infinitely repeated game if and only if it satisfies
the one-deviation property.

(Lemma 153.1 in book)
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Prisoner’s Dilemma

Proposition (Subgame perfect folk theorem for infinitely
repeated Prisoner’s Dilemma)
Let x be a strictly enforceable payoff pair in the Prisoner’s
Dilemma. For all ε > 0 there exists δ < 1 such that if δ > δ then
the δ-discounted infinitely repeated game of the Prisoner’s
Dilemma has a subgame perfect equilibrium in which the
discounted average payoff pair x ′ satisfies |x ′ − x | < ε.
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game for which payoff pair is close to (x1, x2)
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I If δ is close enough to 1, adhering to strategy is better than
deviating, given that xi > 1 ((x1, x2) is strictly enforceable)



Infinitely repeated games Finitely repeated games Dynamic games

Proof of subgame perfect folk theorem for PD

I (x1, x2) feasible⇒ for δ close to 1 we can find outcome
path ((a1, a2, . . . , ak ), (a1, a2, . . . , ak ), . . .) of repeated
game for which payoff pair is close to (x1, x2)

I Suppose player i uses following strategy:

C D
C 3, 3 0, 4
D 4, 0 1, 1

a1
i

a 6= a1 a 6= a2

6� �all outcomes

D
?a 6= ak

-a = a1
a2

i
-a = a2
· · · - ak

i

?
� �

a = ak

I Subgame following a history in which a player has deviated
from the equilibrium path:



Infinitely repeated games Finitely repeated games Dynamic games

Proof of subgame perfect folk theorem for PD
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other player’s action, so no deviation increases deviator’s
payoff
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I Prisoner’s Dilemma is special: has Nash equilibrium in
which each player’s payoff is her minmax payoff

C D
C 3, 3 0, 4
D 4, 0 1, 1

I In any game, for each player

NE payoff ≥ minmax payoff

but game may have no NE in which payoff = minmax
payoff for each player
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Example

A B C
A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

1 2 3 4
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3

4

P1’s payoff→

↑
P2’s payoff

Shaded area =
enforceable payoffs

I Minmax payoffs: (1, 1)

I Nash equilibrium: (A,A), with payoffs (4, 4)
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I In infinitely repeated game, can average payoffs between 1
and 4 be achieved in a SPE?



Infinitely repeated games Finitely repeated games Dynamic games

SPE of general infinitely repeated two-player games

A B C
A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Minmax payoffs: (1, 1)
Nash equilibrium: (A,A)

I In infinitely repeated game, can average payoffs between 1
and 4 be achieved in a SPE?

I Consider possibility of SPE that generates path in which
outcome is (B,B) in every period



Infinitely repeated games Finitely repeated games Dynamic games

SPE of general infinitely repeated two-player games

A B C
A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Minmax payoffs: (1, 1)
Nash equilibrium: (A,A)

I In infinitely repeated game, can average payoffs between 1
and 4 be achieved in a SPE?

I Consider possibility of SPE that generates path in which
outcome is (B,B) in every period

I Clearly cannot use Nash equilibrium, (A,A), as
punishment for deviation



Infinitely repeated games Finitely repeated games Dynamic games

SPE of general infinitely repeated two-player games

A B C
A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Minmax payoffs: (1, 1)
Nash equilibrium: (A,A)

I In infinitely repeated game, can average payoffs between 1
and 4 be achieved in a SPE?

I Consider possibility of SPE that generates path in which
outcome is (B,B) in every period

I Clearly cannot use Nash equilibrium, (A,A), as
punishment for deviation

I Need to make it worthwhile for a player to carry out
punishment: she must be made worse off if she fails to
punish
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I Two-period punishment after deviation from (B,B)
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A B C
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not (B,B)
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(C,C)

-
(C,C)

P2 : C

I Two-period punishment after deviation from (B,B)

I If both players choose C during punishment phase then
after two periods they both revert to B

I If one player does not choose C in first period of
punishment then punishment restarts

I Deviation from C in second period of punishment⇒
transition to first punishment state: punishment restarts
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A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
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not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?
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(C,C)

-
(C,C)

P2 : C

I Player is punished for not carrying out punishment
I SPE for both players to use this strategy?
I Suppose P2 adheres to strategy. Can P1 increase her

payoff by deviating at the start of a subgame, holding rest
of her strategy fixed?

I After any history, both players’ automata are in same state,
so need to consider only three cases
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A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State B

I P1 adheres to strategy⇒ payoffs 2, 2, 2, 2, 2, . . .
I P1 deviates⇒ payoffs (3 or 0),0, 0, 2, 2, . . .
I So adhering to strategy is optimal if 2 + 2δ + 2δ2 ≥ 3, or
δ ≥ 1

2(
√

3− 1) ≈ 0.366
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P1

I P1 adheres to strategy⇒ payoffs 0, 0, 2, 2, 2, . . .
I P1 deviates⇒
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P1

I P1 adheres to strategy⇒ payoffs 0, 0, 2, 2, 2, . . .
I P1 deviates⇒ payoffs 1, 0, 0, 2, 2, . . .
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P1

I P1 adheres to strategy⇒ payoffs 0, 0, 2, 2, 2, . . .
I P1 deviates⇒ payoffs 1, 0, 0, 2, 2, . . .
I So adhering to strategy is optimal if 2δ2 ≥ 1, or
δ ≥ 1

2

√
2 ≈ 0.707
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P2

I P1 adheres to strategy⇒
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P2

I P1 adheres to strategy⇒ payoffs 0, 2, 2, 2, 2, . . .
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P2

I P1 adheres to strategy⇒ payoffs 0, 2, 2, 2, 2, . . .
I P1 deviates⇒
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P2

I P1 adheres to strategy⇒ payoffs 0, 2, 2, 2, 2, . . .
I P1 deviates⇒ payoffs 1, 0, 0, 2, 2, . . .



Infinitely repeated games Finitely repeated games Dynamic games

SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

State P2

I P1 adheres to strategy⇒ payoffs 0, 2, 2, 2, 2, . . .
I P1 deviates⇒ payoffs 1, 0, 0, 2, 2, . . .
I So adhering to strategy is optimal if 2δ + 2δ2 ≥ 1, or

certainly if 2δ2 ≥ 1
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SPE of general infinitely repeated two-player games
A B C

A 4, 4 3, 0 1, 0
B 0, 3 2, 2 1, 0
C 0, 1 0, 1 0, 0

Consider strategy:

B : B
6

	(B,B)

-
not (B,B)

P1 : C
6

	not (C,C)
 	not (C,C)

?

� �
(C,C)

-
(C,C)

P2 : C

Conclusion
We have 1

2(
√

3− 1) < 1
2

√
2, so strategy pair in which both

players use this strategy is subgame perfect equilibrium if
δ ≥ 1

2

√
2 ≈ 0.707
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Idea behind example can be extended to any two-player game

Proposition (Subgame perfect equilibrium folk theorem for
two-player games)
Every strictly enforceable payoff profile of a two-player strategic
game G is (at least) arbitrarily close to a subgame perfect
equilibrium payoff profile of the δ-discounted infinitely repeated
game of G when δ is sufficiently close to 1.
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SPE of general infinitely repeated two-player games

Idea behind example can be extended to any two-player game

Proposition (Subgame perfect equilibrium folk theorem for
two-player games)
Every strictly enforceable payoff profile of a two-player strategic
game G is (at least) arbitrarily close to a subgame perfect
equilibrium payoff profile of the δ-discounted infinitely repeated
game of G when δ is sufficiently close to 1.

I Result can be extended to n-player games in which the set
of feasible payoffs is n-dimensional (Proposition 151.1 in
book)
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Claim: In every Nash equilibrium of finitely repeated Prisoner’s
Dilemma the outcome in every period is (D,D)

Argument :
I Suppose outcome is not (D,D) in some period
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I Suppose outcome is not (D,D) in some period
I Let t be last period in which outcome is not (D,D)

(because horizon is finite, such t exists)
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Example: Prisoner’s Dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

Claim: In every Nash equilibrium of finitely repeated Prisoner’s
Dilemma the outcome in every period is (D,D)

Argument :
I Suppose outcome is not (D,D) in some period
I Let t be last period in which outcome is not (D,D)

(because horizon is finite, such t exists)
I At least one player can profitably deviate from at—say P1
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Finitely repeated games: Nash equilibrium
Consider a game played a fixed finite number of times

Example: Prisoner’s Dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

Claim: In every Nash equilibrium of finitely repeated Prisoner’s
Dilemma the outcome in every period is (D,D)

Argument :
I Suppose outcome is not (D,D) in some period
I Let t be last period in which outcome is not (D,D)

(because horizon is finite, such t exists)
I At least one player can profitably deviate from at—say P1
I Consider strategy of P1 that chooses profitable deviation in

period t and D subsequently, regardless of history
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Finitely repeated games: Nash equilibrium
Consider a game played a fixed finite number of times

Example: Prisoner’s Dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

Claim: In every Nash equilibrium of finitely repeated Prisoner’s
Dilemma the outcome in every period is (D,D)

Argument :
I Suppose outcome is not (D,D) in some period
I Let t be last period in which outcome is not (D,D)

(because horizon is finite, such t exists)
I At least one player can profitably deviate from at—say P1
I Consider strategy of P1 that chooses profitable deviation in

period t and D subsequently, regardless of history
I This strategy is profitable deviation in repeated game



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Nash equilibrium

I Result depends on special property of Prisoner’s Dilemma:
in unique Nash equilibrium, both players’ payoffs are their
minmax payoffs



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Nash equilibrium

I Result depends on special property of Prisoner’s Dilemma:
in unique Nash equilibrium, both players’ payoffs are their
minmax payoffs

I For any strategic game G, outcome in last period of
repeated game must be Nash equilibrium of G



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Nash equilibrium

I Result depends on special property of Prisoner’s Dilemma:
in unique Nash equilibrium, both players’ payoffs are their
minmax payoffs

I For any strategic game G, outcome in last period of
repeated game must be Nash equilibrium of G

I But if G has Nash equilibrium in which some player’s
payoff exceeds her minmax payoff, earlier outcomes need
not be Nash equilibria of G: deviant can be punished with
minmax payoff
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Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)
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Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B
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Consider 4-period game and suppose both players use strategy
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-
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otherwise

-
(A,A)
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I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)
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otherwise

-
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C : C
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-
all

outcomes
B1 : B

I Suppose P2 uses this strategy
I If P1 uses the strategy, outcome is ((A,A), (A,A), (B,B),

(B,B)), with payoffs (10, 10)
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Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B

I Suppose P2 uses this strategy
I If P1 uses the strategy, outcome is ((A,A), (A,A), (B,B),

(B,B)), with payoffs (10, 10)

I If P1 deviates in period 1, payoff is at most
4 + 1 + 1 + 1 = 7
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Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B

I Suppose P2 uses this strategy
I If P1 uses the strategy, outcome is ((A,A), (A,A), (B,B),

(B,B)), with payoffs (10, 10)

I If P1 deviates in period 2, payoff is at most
3 + 4 + 1 + 1 = 9
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Finitely repeated games: Nash equilibrium
Example

A B C
A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B

I Suppose P2 uses this strategy
I If P1 uses the strategy, outcome is ((A,A), (A,A), (B,B),

(B,B)), with payoffs (10, 10)

I If P1 deviates in periods 3 or 4, she is worse off because
(B,B) is NE of stage game
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Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B

I Conclusion: strategy pair in which each player uses the
strategy is a NE



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Nash equilibrium

Example
A B C

A 3, 3 0, 4 1, 0
B 4, 0 2, 2 1, 0
C 0, 1 0, 1 0, 0

I Unique NE: (B,B)

I Minmax payoffs: (1, 1)

Consider 4-period game and suppose both players use strategy

A1 : A

-otherwise

-
(A,A)

A2 : A

otherwise

-
(A,A)

B1 : B

C : C


	6all outcomes

-
all

outcomes
B1 : B

I Conclusion: strategy pair in which each player uses the
strategy is a NE

I In T -period game, strategy pair in which each strategy
starts with T − 2 periods of A and ends with 2 periods of B
is a NE
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Finitely repeated games: Nash equilibrium

Proposition (Nash folk theorem for finitely repeated
games)
If G has a Nash equilibrium in which the payoff of every player i
exceeds her minmax payoff, then for any strictly enforceable
outcome a∗ of G and any ε > 0 there exists T ∗ such that if
T > T ∗ then the T -period repeated game of G has a Nash
equilibrium in which the payoff of every player i is within ε of
ui(a∗).



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Nash equilibrium

Proof

I For each player j , let p−j be a list of actions of the other
players that holds j ’s payoff to its minmax value, vj :

p−j ∈ arg min
a−j∈A−j

(

max
aj∈Aj

uj(a−j , aj)

)
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aj∈Aj
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I Suppose each player i uses following strategy:
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Proof

I For each player j , let p−j be a list of actions of the other
players that holds j ’s payoff to its minmax value, vj :

p−j ∈ arg min
a−j∈A−j

(

max
aj∈Aj

uj(a−j , aj)

)

I Suppose each player i uses following strategy:
I in periods 1, . . . ,T − L choose a∗i until first period in which a

single player j 6= i deviates, after which chooses (p−j )i
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Finitely repeated games: Nash equilibrium

Proof

I For each player j , let p−j be a list of actions of the other
players that holds j ’s payoff to its minmax value, vj :

p−j ∈ arg min
a−j∈A−j

(

max
aj∈Aj

uj(a−j , aj)

)

I Suppose each player i uses following strategy:
I in periods 1, . . . ,T − L choose a∗i until first period in which a

single player j 6= i deviates, after which chooses (p−j )i
I in periods T − L + 1, . . . ,T choose i ’s component of a Nash

equilibrium â of G in which every player’s payoff exceeds
her minmax payoff
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Finitely repeated games: Nash equilibrium

S1 : a∗i S2 : a∗i · · · ST−L : a∗i N : âi

all outcomes

otherwiseotherwise

· · · P1 : (p−1)i
a1 6= a∗1 &

aj = a∗j ∀j 6= 1

all outcomes

...

· · · Pi−1 : (p−(i−1))i
ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

all outcomes

...

· · · Pi+1 : (p−(i+1))i
ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

all outcomes

· · · Pn : (p−n)i
an 6= a∗n &

aj = a∗j ∀j 6= n

all outcomes

...

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

...

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

an 6= a∗n &

aj = a∗j ∀j 6= n

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

...

...
an 6= a∗n &

aj = a∗j ∀j 6= n
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Finitely repeated games: Nash equilibrium

S1 : a∗i S2 : a∗i · · · ST−L : a∗i N : âi

all outcomes

otherwiseotherwise

· · · P1 : (p−1)i
a1 6= a∗1 &

aj = a∗j ∀j 6= 1

all outcomes

...

· · · Pi−1 : (p−(i−1))i
ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

all outcomes

...

· · · Pi+1 : (p−(i+1))i
ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

all outcomes

· · · Pn : (p−n)i
an 6= a∗n &

aj = a∗j ∀j 6= n

all outcomes

...

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

...

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

an 6= a∗n &

aj = a∗j ∀j 6= n

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

...

...
an 6= a∗n &

aj = a∗j ∀j 6= n

I Cannot profitably deviate by changing actions in last L
periods because â is NE of G
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Finitely repeated games: Nash equilibrium

S1 : a∗i S2 : a∗i · · · ST−L : a∗i N : âi

all outcomes

otherwiseotherwise

· · · P1 : (p−1)i
a1 6= a∗1 &

aj = a∗j ∀j 6= 1

all outcomes

...

· · · Pi−1 : (p−(i−1))i
ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

all outcomes

...

· · · Pi+1 : (p−(i+1))i
ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

all outcomes

· · · Pn : (p−n)i
an 6= a∗n &

aj = a∗j ∀j 6= n

all outcomes

...

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

...

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

an 6= a∗n &

aj = a∗j ∀j 6= n

a1 6= a∗1 &

aj = a∗j ∀j 6= 1

ai−1 6= a∗i−1 &

aj = a∗j ∀j 6= i − 1

ai+1 6= a∗i+1 &

aj = a∗j ∀j 6= i + 1

...

...
an 6= a∗n &

aj = a∗j ∀j 6= n

I Cannot profitably deviate by changing actions in last L
periods because â is NE of G

I If L large enough, cannot profitably deviate by changing
actions in earlier periods because ui(â) exceeds i ’s
minmax payoff
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I In SPE, outcome in last period after any history must be
Nash equilibrium of G

I So if G has unique Nash equilibrium payoff profile, no
punishment is possible

Proposition
If G has a unique Nash equilibrium payoff profile, then for any
value of T the action profile chosen after any history in any
subgame perfect equilibrium of the T -period repeated game of
G is a Nash equilibrium of G.
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Finitely repeated games: Subgame perfect equilibrium

I In SPE, outcome in last period after any history must be
Nash equilibrium of G

I So if G has unique Nash equilibrium payoff profile, no
punishment is possible

Proposition
If G has a unique Nash equilibrium payoff profile, then for any
value of T the action profile chosen after any history in any
subgame perfect equilibrium of the T -period repeated game of
G is a Nash equilibrium of G.

I If G has more than one Nash equilibrium payoff profile,
punishment is possible
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Finitely repeated games: Subgame perfect equilibrium

If G has more than one Nash equilibrium payoff profile, credible
punishment is possible

Example
C D E

C 3, 3 0, 4 0, 0

D 4, 0 1, 1 0, 0

E 0, 0 0, 0 1
2 ,

1
2

Nash equilibria
I (D,D)

I (E ,E)
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E 0, 0 0, 0 1
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1
2

C
(D, ·) or (·,D) (D, ·) or (·,D) (D, ·) or (·,D)

6

	all outcomes

E

1 2 T − 3
- C - · · · C- D- - D - D

I Deviation most difficult to deter: in period T − 3
I Adhere to strategy⇒ payoff in last 4 periods:

3 + 1 + 1 + 1 = 6
I Deviate⇒ payoff in last 4 periods: 4 + 1

2 + 1
2 + 1

2 = 11
2
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Finitely repeated games: Subgame perfect equilibrium
C D E

C 3, 3 0, 4 0, 0

D 4, 0 1, 1 0, 0

E 0, 0 0, 0 1
2 ,

1
2

C
(D, ·) or (·,D) (D, ·) or (·,D) (D, ·) or (·,D)

6

	all outcomes

E

1 2 T − 3
- C - · · · C- D- - D - D

I (D,D) and (E ,E) are Nash equilibria of G, so no profitable
deviation from punishment or in last 3 periods

I Hence strategy pair in which both players use this strategy
is subgame perfect equilibrium

I T large⇒ average payoffs approach 3



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Subgame perfect equilibrium

I This example shows how payoffs greater than the payoffs
in the worst Nash equilibrium can be supported in an SPE



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Subgame perfect equilibrium

I This example shows how payoffs greater than the payoffs
in the worst Nash equilibrium can be supported in an SPE

I In fact, any strictly enforceable payoffs can be supported



Infinitely repeated games Finitely repeated games Dynamic games

Finitely repeated games: Subgame perfect equilibrium

I This example shows how payoffs greater than the payoffs
in the worst Nash equilibrium can be supported in an SPE

I In fact, any strictly enforceable payoffs can be supported
I The strategies required to do so are more complicated

than the ones in the example
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Proposition (Subgame perfect Folk theorem for finitely
repeated games)
Let a∗ be a strictly enforceable outcome of the two-player game
G. Assume that for each i ∈ N there are two Nash equilibria of
G that differ in the payoff of player i . Then for any ε > 0 there
exists an integer T ∗ such that if T > T ∗ the T -period repeated
game of G has a subgame perfect equilibrium in which the
payoff of each player i is within ε of ui(a∗).
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Finitely repeated games: Subgame perfect equilibrium

Proposition (Subgame perfect Folk theorem for finitely
repeated games)
Let a∗ be a strictly enforceable outcome of the two-player game
G. Assume that for each i ∈ N there are two Nash equilibria of
G that differ in the payoff of player i . Then for any ε > 0 there
exists an integer T ∗ such that if T > T ∗ the T -period repeated
game of G has a subgame perfect equilibrium in which the
payoff of each player i is within ε of ui(a∗).

Result can be generalized to any outcome path with strictly
enforceable payoffs

As in case of infinitely repeated games, extension to many
players requires restriction on dimension of set of feasible
payoff profiles
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Infinitely repeated games with discounting

NE When players are very patient, set of discounted average
payoff profiles generated by Nash equilibria of repeated
game is essentially set of enforceable payoff profiles of
stage game

SPE For two-player game, same result holds for subgame
perfect equilibria

For many player game, same result holds for subgame
perfect equilibria if set of strictly enforceable outcomes
has “full dimension”
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Repeated games: Summary

Finitely repeated games

NE If payoff profile in every NE of stage game is profile of
minmax payoffs, then set of NE outcome paths is set of
sequences of NEs of the stage game

If stage game has NE in which every player’s payoff
exceeds her minmax payoff, then for T large enough the
set of average payoff profiles generated by Nash
equilibria of T -period repeated game is essentially set of
enforceable payoff profiles of stage game
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Finitely repeated games

SPE If stage game has unique NE payoff profile, then set of
SPE outcome paths is set of sequences of NEs of the
stage game

For two-player game, if, for each player, stage game has
two NEs in which the player’s payoff is different, then for T
large enough the set of average payoff profiles generated
by Nash equilibria of T -period repeated game is
essentially set of enforceable payoff profiles of stage
game
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Repeated games: Summary

Finitely repeated games

SPE If stage game has unique NE payoff profile, then set of
SPE outcome paths is set of sequences of NEs of the
stage game

For two-player game, if, for each player, stage game has
two NEs in which the player’s payoff is different, then for T
large enough the set of average payoff profiles generated
by Nash equilibria of T -period repeated game is
essentially set of enforceable payoff profiles of stage
game

For many player game, same result holds for subgame
perfect equilibria if set of strictly enforceable outcomes
has “full dimension”
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Dynamic games
(Based on slides written by Colin Stewart.)

I In repeated game, payoffs in each period depend only on
current actions

I But in some applications, payoffs depend directly on past
actions
I Firms’ investment in capital may affect their costs over

many periods
I Firm selling durable good can keep current production as

future stock
I Individuals who extract resources from a common pool

affect the quantity available in the future

I Can model this dependence by allowing payoffs to depend
on a state variable
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Dynamic game: definition
A dynamic game (or stochastic game) consists of
I a set N of players
I for each player i , a set Ai of actions
I a set S of states (finite)
I for each player i , a (Bernoulli) payoff function

ui : A× S → R
I a common discount factor δ ∈ (0, 1)
I a probability distribution q0 over S specifying the

probability of each state in the first period
I for each a ∈ A and s, s′ ∈ S, a probability q(s′ | s, a) that

state s′ occurs in period t if, in period t − 1, the state is s
and the action profile is a

Total payoff for player i given states (s1, s2, . . . ) and action
profiles (a1, a2, . . . ):

∞∑

t=1

δt−1ui(a
t , st )
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Special cases

I Infinitely repeated games
I Payoffs independent of state

I Example: One state (S = {s} and transition probabilities
q(s | s, a) = 1 for all a)

I Finitely repeated games (with discounting)
I For T -period repetition of game G, state space

S = {s1, . . . , sT , sT +1}
I Initial distribution q0(s1) = 1
I Transition probabilities q(st | st−1, a) = 1 for all a and all

t = 2, . . . ,T , and q(sT +1 | sT +1, a) = 1 for all a
I Payoffs ui (a, s) same as in G in states s1, . . . , sT , all payoffs

equal to 0 in state sT +1

I Game with random payoffs
I Transition probabilities q(s′ | s, a) independent of a
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Subgame perfect equilibrium
Every dynamic game corresponds to an extensive game with
simultaneous and chance moves

I First chance moves according to q0

I Players move simultaneously in each period
I At the end of each period, chance moves to determine the

state in the following period according to q
I Perfect information: all players observe each move by

chance

A (pure) strategy for player i is a function
σi :

⋃∞
t=1(At−1 × St )→ Ai specifying an action for each history

(a1, . . . , at−1, s1, . . . , st )

A strategy profile is a subgame perfect equilibrium of a
dynamic game if it is a subgame perfect equilibrium of the
corresponding extensive game



Infinitely repeated games Finitely repeated games Dynamic games

Markov perfect equilibrium

Researchers usually focus on strategies specifying actions that
depend only on current state, not directly on history of actions
and previous states



Infinitely repeated games Finitely repeated games Dynamic games

Markov perfect equilibrium

Researchers usually focus on strategies specifying actions that
depend only on current state, not directly on history of actions
and previous states
I A strategy σi for player i is Markov if there exists a function
σ̃i : S → Ai such that σi(a1, . . . , at−1, s1, . . . , st ) = σ̃i(st ) for
all (a1, . . . , at−1, s1, . . . , st )



Infinitely repeated games Finitely repeated games Dynamic games

Markov perfect equilibrium

Researchers usually focus on strategies specifying actions that
depend only on current state, not directly on history of actions
and previous states
I A strategy σi for player i is Markov if there exists a function
σ̃i : S → Ai such that σi(a1, . . . , at−1, s1, . . . , st ) = σ̃i(st ) for
all (a1, . . . , at−1, s1, . . . , st )

Note: some authors allow Markov strategies to depend also on
time, and refer to strategies of the above form as “stationary
Markov”



Infinitely repeated games Finitely repeated games Dynamic games

Markov perfect equilibrium

Researchers usually focus on strategies specifying actions that
depend only on current state, not directly on history of actions
and previous states
I A strategy σi for player i is Markov if there exists a function
σ̃i : S → Ai such that σi(a1, . . . , at−1, s1, . . . , st ) = σ̃i(st ) for
all (a1, . . . , at−1, s1, . . . , st )

Note: some authors allow Markov strategies to depend also on
time, and refer to strategies of the above form as “stationary
Markov”

A strategy profile of a dynamic game is a Markov perfect
equilibrium (MPE) if it is a subgame perfect equilibrium and
each player’s strategy is Markov



Infinitely repeated games Finitely repeated games Dynamic games

Markov perfect equilibrium

Researchers usually focus on strategies specifying actions that
depend only on current state, not directly on history of actions
and previous states
I A strategy σi for player i is Markov if there exists a function
σ̃i : S → Ai such that σi(a1, . . . , at−1, s1, . . . , st ) = σ̃i(st ) for
all (a1, . . . , at−1, s1, . . . , st )

Note: some authors allow Markov strategies to depend also on
time, and refer to strategies of the above form as “stationary
Markov”

A strategy profile of a dynamic game is a Markov perfect
equilibrium (MPE) if it is a subgame perfect equilibrium and
each player’s strategy is Markov

Can show that MPE in possibly mixed strategies exists if A and
S are finite
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Example 1

Consider infinitely repeated Prisoner’s dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

Many SPEs if δ is close to 1 (Folk Theorem)

Which SPEs are MPEs?
I Suppose there is a single state s
I Strategy is Markov if and only if it chooses same action

regardless of history
I Not SPE to choose C at every history: no punishment, so

each player prefers to deviate
I ⇒ unique MPE: each player always chooses D
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MPE in repeated games

MPE does not allow players to respond to opponents’ past
behavior unless it affects current state

I In repeated game of G, MPE for dynamic game with single
state consists of repeated play of a NE of G

I But in many contexts, the idea that one might punish an
opponent for their past behavior (even if that behavior does
not directly affect current payoffs) seems reasonable

I Suggests that one should be cautious about whether MPE
is an appropriate concept even outside of repeated games

I Typical justification of MPE is based on analytical
convenience
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D 6, 0 1, 1
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C 3, 3 0, 4
D 4, 0 1, 1
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C 5, 5 0, 6
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Does game have SPE with outcome (C,C) in every period?
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Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 3 +
4δ

1− δ
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 3 +
4δ

1− δ

I Payoff from deviating to D in state 1: 4 +
δ

1− δ



Infinitely repeated games Finitely repeated games Dynamic games

Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 3 +
4δ

1− δ

I Payoff from deviating to D in state 1: 4 +
δ

1− δ
I Prefer not to deviate if δ ≥ 1

4
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 2:

5 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 5 +
4δ

1− δ
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 2:

5 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 5 +
4δ

1− δ

I Payoff from deviating to D in state 1: 6 +
δ

1− δ
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I After any history with no deviations, payoff from equilibrium
strategy in state 2:

5 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 5
)

= 5 +
4δ

1− δ

I Payoff from deviating to D in state 1: 6 +
δ

1− δ
I Prefer not to deviate if δ ≥ 1

4
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I At any history with at least one deviation, no incentive to
deviate in either state
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE with outcome (C,C) in every period?

I Consider pair of grim strategies: after any deviation, play D
forever in both states

I At any history with at least one deviation, no incentive to
deviate in either state

So game has SPE with outcome (C,C) in every period
whenever δ ≥ 1

4
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C 3, 3 0, 4
D 4, 0 1, 1
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 1
)

= 3 +
2δ

1− δ
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 1
)

= 3 +
2δ

1− δ

I Payoff from deviating to D in state 1 equals 4 +
δ

1− δ
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I After any history with no deviations, payoff from equilibrium
strategy in state 1:

3 +
∞∑

t=1

δt (1
2 · 3 + 1

2 · 1
)

= 3 +
2δ

1− δ

I Payoff from deviating to D in state 1 equals 4 +
δ

1− δ
I Prefer not to deviate if δ ≥ 1

2



Infinitely repeated games Finitely repeated games Dynamic games

Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I No incentive to deviate in state 2, or in state 1 at any
history with at least one deviation
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I No incentive to deviate in state 2, or in state 1 at any
history with at least one deviation

⇒ game has such an SPE iff δ ≥ 1
2
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Example 2
Two states, equally likely in each period regardless of history

C D
C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

Does game have SPE in which outcome is (C,C) in state 1,
(D,D) in state 2?

I Consider pair of strategies: in state 1, choose C then D
after any deviation, and in state 2, choose D always

I No incentive to deviate in state 2, or in state 1 at any
history with at least one deviation

⇒ game has such an SPE iff δ ≥ 1
2

Failure to cooperate in one state makes it more difficult to sustain
cooperation in the other one
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Two states, equally likely in each period regardless of history
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

What are the MPEs of this game?
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Two states, equally likely in each period regardless of history
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

What are the MPEs of this game?

I Markov strategy specifies pair of actions, one for each state
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Example 2

Two states, equally likely in each period regardless of history
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

What are the MPEs of this game?

I Markov strategy specifies pair of actions, one for each state
I If each player uses Markov strategy, deviating in one

period has no effect on future play



Infinitely repeated games Finitely repeated games Dynamic games

Example 2

Two states, equally likely in each period regardless of history
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 5, 5 0, 6
D 6, 0 1, 1

What are the MPEs of this game?

I Markov strategy specifies pair of actions, one for each state
I If each player uses Markov strategy, deviating in one

period has no effect on future play

⇒ unique MPE involves both players choosing D in both states
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Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
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Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
I Markov strategy consists of a pair of actions: one to be

chosen in state 1, the other in state 2
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Example 3

Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
I Markov strategy consists of a pair of actions: one to be

chosen in state 1, the other in state 2
I Every subgame in state 2 is identical to repeated PD
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Example 3

Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
I Markov strategy consists of a pair of actions: one to be

chosen in state 1, the other in state 2
I Every subgame in state 2 is identical to repeated PD⇒

both players must choose D in MPE
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Example 3

Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
I Markov strategy consists of a pair of actions: one to be

chosen in state 1, the other in state 2
I Every subgame in state 2 is identical to repeated PD⇒

both players must choose D in MPE
I It one MPE, both choose D also in state 1
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Example 3

Two states, identical payoffs
C D

C 3, 3 0, 4
D 4, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Begin in state 1; remain in state 1 as long as both choose C;
switch to state 2 forever if either player chooses D in any period

What are the MPE of this game?
I Markov strategy consists of a pair of actions: one to be

chosen in state 1, the other in state 2
I Every subgame in state 2 is identical to repeated PD⇒

both players must choose D in MPE
I It one MPE, both choose D also in state 1
I But if both choose C in state 1, then strategies are

equivalent to grim strategies⇒ MPE if δ ≥ 1
3
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Example 3: Discussion

With one state, game has a unique MPE; with two identical
states, game has two MPE, including one in which players do
not play the NE of stage game
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states, game has two MPE, including one in which players do
not play the NE of stage game

I Raises question of how to define state space
I If state is payoff-irrelevant, should we allow behavior to

depend on it?
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With one state, game has a unique MPE; with two identical
states, game has two MPE, including one in which players do
not play the NE of stage game

I Raises question of how to define state space
I If state is payoff-irrelevant, should we allow behavior to

depend on it?
I Some argue that states should be defined according to

payoff-relevance: no two states should be identical in
terms of payoffs
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Example 3: Discussion

With one state, game has a unique MPE; with two identical
states, game has two MPE, including one in which players do
not play the NE of stage game

I Raises question of how to define state space
I If state is payoff-irrelevant, should we allow behavior to

depend on it?
I Some argue that states should be defined according to

payoff-relevance: no two states should be identical in
terms of payoffs

I But this assumption is not entirely satisfactory: with only a
very small difference between payoffs in the two states, the
example goes through (e.g., there could be an additional
tiny benefit associated with the first defection)
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Summary

I Dynamic games often have a large set of SPE
I The set of MPE is typically much smaller
I But MPE may not be appropriate in settings where players

might punish deviators
I Set of MPEs depend on the state space
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