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Repeated games

I Same set of players interact repeatedly
I Every player remembers other players’ previous actions
I Each player can condition her action in period t on other

players’ actions in periods 1, . . . , t − 1
I Extensive game with perfect information and simultaneous

moves
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Infinitely repeated games

Let G = 〈N, (Ai), (%i)〉 be strategic game; denote A = ×i∈NAi

An infinitely repeated game of G is an extensive game
〈N,H,P, (%∗i )〉 where
I H = {∅} ∪ (∪∞t=1At ) ∪ A∞ (where A∞ is set of infinite

sequences (at )∞t=1 of action profiles in G)
I P(h) = N for all h
I %∗i is a preference relation on A∞ that extends %i in the

sense that if (at ) ∈ A∞, a ∈ A, a′ ∈ A, and a %i a′ then

(a1, . . . , at−1, a, at+1, . . .) %∗i (a1, . . . , at−1, a′, at+1, . . .)

for all values of t
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Repeated games: Example
Suppose G is Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1

G has unique Nash equilibrium, (D,D)

Repeated game
“[T]he strategies: [player 1] plays [C] ’til [player 2]
plays [D], then [D] ever after, [player 2] plays [C] ’til
[player 1] plays [D], then [D] ever after, are very nearly
at equilibrium [in a 100-period repetition of the game]
and in a game with an indeterminate stop point or an
infinite game with interest on utility it is an equilibrium
point.” (John F. Nash, commenting on an experiment
in January 1950)
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Repeated games: Example

Suppose G is Prisoner’s Dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

G has unique Nash equilibrium, (D,D)

Infinitely repeated game

I Define strategy s∗i by s∗i (∅) = C and

s∗i (a1, . . . , at−1) =

{
C if aτj = C for τ = 1, . . . , t − 1

D otherwise

where j is the other player
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Repeated games: Example

C D
C 3, 3 0, 4
D 4, 0 1, 1

s∗i (a1, . . . , at−1) =

{
C if aτj = C for τ = 1, . . . , t − 1

D otherwise

If P2 uses strategy s∗2, what is P1’s best response?
I Strategy that chooses C after every history in which P2

chose C in every period (e.g. s∗1)
I outcome (C,C) in every period
I payoffs (3, 3) in every period

I Strategy that chooses D in some period t after history in
which P2 chose C in every previous period
I outcome in period t is (D,C), with payoffs (4, 0)
I in every subsequent period P2 chooses D
I payoff to P1 in every subsequent period is at most 1
I best option for P1 is to choose D after period t
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Repeated games: Example

C D
C 3, 3 0, 4
D 4, 0 1, 1

s∗i (a1, . . . , at−1) =

{
C if aτj = C for τ = 1, . . . , t − 1

D otherwise

I So P1’s choice is between

stick to C ⇒ payoffs (3, 3, . . . , 3, 3, 3, 3, . . .)

deviate to D in period t ⇒ payoffs (3, 3, . . . , 3, 4, 1, 1, . . .)

I If P1 is not too impatient, (3, 3, . . .) is better, so best
response is strategy that chooses C after every history in
which P2 chooses C in every period

I s∗1 is such a strategy
I Argument is symmetric for P2, so if players are sufficiently

patient, (s∗1, s
∗
2) is a Nash equilibrium
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Repeated games: Example

C D
C 3, 3 0, 4
D 4, 0 1, 1

Conclusion
If players sufficiently patient, strategy pair (s∗1, s

∗
2) is Nash

equilibrium of infinitely repeated game, where s∗i (∅) = C and

s∗i (a1, . . . , at−1) =

{
C if aτj = C for τ = 1, . . . , t − 1

D otherwise

where j is the other player

Outcome of this equilibrium is (C,C) in every period
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Repeated games: Questions

I What do we mean by “patience”?
I How patient do the players have to be for the strategy pair

(s∗1, s
∗
2) to be a Nash equilibrium?

I Can the outcome path in which (C,C) is played in every
period be supported with less severe punishments?

I What outcomes other than (C,C) in every period are
supported?

I What about subgame perfect equilibria rather than Nash
equilibria? Is it optimal for each player to punish the other
player for deviating?

I What happens in games other than Prisoner’s Dilemma?
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Preferences in repeated games

Discounting Represented by discounted sum of one-shot
payoffs: sequence (a1, a2, . . .) of outcomes has
payoff

∞∑

t=1

δt−1ui(a
t )

Limit of means Preferences essentially represented by

lim
T→∞

∑T
t=1 ui(at )

T

though need to deal with possibility that limit
doesn’t exist

Overtaking Won’t discuss
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Preferences in repeated games
I Will concentrate on preferences with discounting
I Two strategic games generate same preferences with

discounting in repeated game⇔ each player’s payoffs in
one game are affine transformation of her payoffs in other
game

Example
C D

C 3, 3 0, 4
D 4, 0 1, 1

G: payoffs (u1, u2)

C D
C 7, 8 1, 11
D 9,−1 3, 2

G′: payoffs (v1, v2)

I Payoffs of P1: v1(a) = 1 + 2u1(a) for all a
I Payoffs of P2: v2(a) = −1 + 3u2(a) for all a
I So preferences of player i in infinitely repeated game of G

are same as preferences of player i in G′, for i = 1, 2
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Preferences in repeated games
I Will concentrate on preferences with discounting
I Two strategic games generate same preferences with

discounting in repeated game⇔ each player’s payoffs in
one game are affine transformation of her payoffs in other
game

Example
C D

C 3, 3 0, 4
D 4, 0 1, 1

G: payoffs (u1, u2)

C D
C 3, 3 0, 7
D 7, 0 1, 1

G′: payoffs (u1, u2)

I Payoffs of P1 are ordinally same in two games but not
affine transforms of each other

I Different preferences in repeated game: for δ close to one

((C,C), (C,C)) �1 ((C,D), (D,C)) for left game

((C,C), (C,C)) ≺1 ((C,D), (D,C)) for right game
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Preferences with discounting

I Instead of working with discounted sum, sometimes
convenient to work with discounted average

(1− δ)
∞∑

t=1

δt−1ui(a
t )

I For constant stream of payoffs (c, c, . . .), discounted
average is

(1− δ)(c + δc + δ2c + . . . ) = (1− δ)
c

1− δ
= c

I Sometimes refer to player’s discounted average payoff
simply as her payoff in repeated game
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Nash equilibrium of Prisoner’s Dilemma

Can now answer question: For the Prisoner’s Dilemma
C D

C 3, 3 0, 4
D 4, 0 1, 1

how patient do the players have to be for the strategy pair
(s∗1, s

∗
2) to be a Nash equilibrium, where

s∗i (∅) = C

s∗i (a1, . . . , at−1) =

{
C if aτj = C for τ = 1, . . . , t − 1

D otherwise

for i = 1, 2 and j is the other player?
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Nash equilibrium of Prisoner’s Dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1

Suppose P2 uses s∗2
I P1 uses s∗1
⇒ P1’s payoff is 3 + 3δ + 3δ2 + · · ·

I P1 deviates
⇒ Either outcome remains same or changes to (D,C) in

some period t
⇒ If outcome changes, P2 chooses D in every period ≥ t + 1
⇒ Best strategy of P1 that deviates in t chooses D in every

period ≥ t + 1
⇒ P1’s payoff is 3 + 3δ + · · ·+ 3δt−2 + 4δt−1 + δt + δt+1 + · · ·
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Nash equilibrium of Prisoner’s Dilemma
I P1 has no profitable deviation if and only if

3+3δ+· · ·+3δt−2 +4δt−1 +δt +δt+1 +· · · ≤ 3+3δ+3δ2 +· · ·

or

4δt−1 + δt + δt+1 + · · · ≤ 3δt−1 + 3δt + 3δt+1 + · · ·

or
4 + δ + δ2 + · · · ≤ 3 + 3δ + 3δ2 + · · ·

or

4 +
δ

1− δ
≤

3
1− δ

⇔ 4(1− δ) + δ ≤ 3 ⇔ δ ≥ 1
3

I s∗1 is a best response of P1 to s∗2 ⇔ δ ≥ 1
3

Conclusion: (s∗1, s
∗
2) is a Nash equilibrium if and only if δ ≥ 1

3
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Describing strategies

Can represent strategies compactly in figure:

s∗1:
C : C -

{(C,D), (D,D)}
D : D

?

��{(C,C), (D,C)}
?

��
all outcomes

Viewed this way, the strategy is an automaton, consisting of

a set Qi (states) {C,D}
q0

i ∈ Qi ( initial state) C
fi : Qi → Ai (output function) fi(C) = C, fi(D) = D
τi : Qi × A→ Qi

( transition function)
τi(C, (C,C)) = τi(C, (D,C)) = C,
τi(C, (C,D)) = τi(C, (D,D)) =
τi(D, (a1, a2)) = D for all (a1, a2)

Additional benefit of representing strategy in this way: measure
of complexity of strategy is number of states
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Describing strategies

Any automaton 〈Qi , q0
i , fi , τi〉 defines a strategy as follows:

I si(∅) = fi(q0
i )

I si(a1) = fi(τi(q0
i , a

1)) for all a1 ∈ A
I si(a1, a2) = fi(τi(τi(q0

i , a
1), a2)) for all (a1, a2) ∈ A× A

I and so on
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Strategies: Examples

Three-period punishment

P0 : C
6

	
{(·,C)}

-
{(·,D)}

P1 : D -
all

outcomes

P2 : D -
all

outcomes

P3 : D
?

� �
all outcomes

Tit-for-tat

C : C
6

	
{(·,C)}

-
{(·,D)}

D : D
6

	
{(·,D)}

?

� �{(·,C)}

All-D

D : D
?

��
all outcomes
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Nash equilibrium with limited punishment?
C D

C 3, 3 0, 4
D 4, 0 1, 1

P0 : C
6

	
{(·,C)}

-
{(·,D)}

P1 : D -
all

outcomes

P2 : D -
all

outcomes

P3 : D
?

� �
all outcomes

I Does infinitely repeated game have Nash equilibrium in
which each player uses limited punishment strategy?

I Suppose P2 uses limited punishment strategy with k
periods of punishment

I When is it optimal for P1 to use same strategy?
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Nash equilibrium with limited punishment?
C D

C 3, 3 0, 4
D 4, 0 1, 1

P0 : C
6

	
{(·,C)}

-
{(·,D)}

P1 : D -
all

outcomes

P2 : D -
all

outcomes

P3 : D
?

� �
all outcomes

I If P1 uses same strategy, outcome is (C,C) in every
period⇒ P1’s payoff is 3 in every period
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Nash equilibrium with limited punishment?
C D

C 3, 3 0, 4
D 4, 0 1, 1

P0 : C
6

	
{(·,C)}

-
{(·,D)}

P1 : D -
all

outcomes

P2 : D -
all

outcomes

P3 : D
?

� �
all outcomes

I If P1 has profitable deviation, then deviation to D in
period 1 that returns to C in period k + 2 is profitable
Resulting outcomes and payoffs to P1:

(D,C) 4
(D,D) 1 first period of punishment
(D,D) 1

.

.

.
.
.
.

(D,D) 1 last period of punishment
(C,C) 3
(C,C) 3

.

.

.
.
.
.
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Nash equilibrium with limited punishment?
C D

C 3, 3 0, 4
D 4, 0 1, 1

P0 : C
6

	
{(·,C)}

-
{(·,D)}

P1 : D -
all

outcomes

P2 : D -
all

outcomes

P3 : D
?

� �
all outcomes

I For deviation not to be profitable, need

4 + δ + δ2 + · · ·+ δk ≤ 3 + 3δ + 3δ2 + · · ·+ 3δk

3 + (1 + δ + δ2 + · · ·+ δk ) ≤ 3(1 + δ + δ2 + · · ·+ δk )

3 ≤
2(1− δk+1)

1− δ
1− 3δ + 2δk+1 ≤ 0

k = 1⇒ δ ≥ 1
2 ; k ↑ ⇒ cutoff value of δ ↓ 1

3
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Nash equilibrium with limited punishment?

Conclusion

I For any value of k ≥ 1, strategy pair in which each player
punishes other for k periods in event of deviation is Nash
equilibrium of infinitely repeated game if δ is close enough
to 1

I Larger k ⇒ smaller lower bound on δ: mutually desirable
outcome (C,C) is sustained by short punishment only if
players are relatively patient
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What payoffs can be achieved in a Nash equilibrium?

Feasible payoffs
First consider payoffs that are possible when players are
patient (discounting with δ close to 1, or limit of means)

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

(C,C) forever

(C,D) forever

(D,C) forever(D,D) forever

I Action pair (C,C) in every period ⇒ (discounted average, and
limit of means) payoffs (3, 3)



Repeated interaction Repeated games Preferences NE of Prisoner’s Dilemma Strategies Limited punishment NE payoffs

What payoffs can be achieved in a Nash equilibrium?

Feasible payoffs
First consider payoffs that are possible when players are
patient (discounting with δ close to 1, or limit of means)

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

(C,C) forever

(C,D) forever

(D,C) forever(D,D) forever

I Similarly for repetitions of other action pairs
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What payoffs can be achieved in a Nash equilibrium?

Feasible payoffs
First consider payoffs that are possible when players are
patient (discounting with δ close to 1, or limit of means)

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

(C,C) forever

(C,D) forever

(D,C) forever(D,D) forever

(C,C), (D,C) alternation

I Could alternate between (C,C) and (D,C) ⇒ payoffs close to
( 7

2 ,
3
2)
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What payoffs can be achieved in a Nash equilibrium?

Feasible payoffs
First consider payoffs that are possible when players are
patient (discounting with δ close to 1, or limit of means)

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

(C,C) forever

(C,D) forever

(D,C) forever(D,D) forever

I Similarly could cycle through any other sequence of outcomes
⇒ average of payoffs to outcomes in sequence
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What payoffs can be achieved in a Nash equilibrium?

Feasible payoffs
First consider payoffs that are possible when players are
patient (discounting with δ close to 1, or limit of means)

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

(C,C) forever

(C,D) forever

(D,C) forever(D,D) forever

I Can approximately achieve any linear combination of payoffs in
stage game
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Nash equilibrium payoffs

One Nash equilibrium
Pair (s∗, s∗) of punishment strategies is a Nash equilibrium of
repeated game, yielding discounted average payoffs (3, 3)

Another Nash equilibrium
Consider strategy ŝ in which each player chooses D after every
history:

D : D
?

��
all outcomes

(ŝ, ŝ) is a Nash equilibrium of the repeated game, yielding
payoffs (1, 1)
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Nash equilibrium payoffs
These equilibria yield payoffs of (3, 3) and (1, 1). What other
payoffs are possible in Nash equilibria?

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff

Only payoffs in dark region
are possible in NE

C D
C 3, 3 0, 4
D 4, 0 1, 1

I Are payoffs (0, 4) possible in Nash equilibrium?
I No, because by choosing D after every history, P1

guarantees payoff of at least 1 in every period
I In any Nash equilibrium, payoff of each player is at least 1
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Nash equilibrium payoffs
For general strategic game, the payoff player i can guarantee in
any period is her minmax payoff

vi = min
a−i∈A−i

(

max
ai∈Ai

ui(a−i , ai)

)

Example
A B C

A 1, 1 0, 0 2, 3
B 0, 0 1, 2 1, 2
C 0, 2 2, 3 3, 1

I v1 = 1
I v2 = 2
I Note that pair of minmax actions (B,A) is not a Nash

equilibrium of this game
I For Prisoner’s Dilemma, v1 = v2 = 1, and pair of minmax

actions, (C,C), is a Nash equilibrium
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Nash equilibrium payoffs

I wi ≥ vi for all i ∈ N ⇒ w is enforceable
I wi > vi for all i ∈ N ⇒ w is strictly enforceable

Proposition
For any strategic game G and any discount factor δ, every Nash
equilibrium payoff profile of the δ-discounted infinitely repeated
game of G is an enforceable payoff profile of G

Idea of proof
Every player i can get at least vi in every period by choosing an
action in the period that best responds to the other players’
actions
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Proof that every Nash equilibrium payoff profile is
enforceable

I Fix strategy profile s
I Define strategy s′i of player i : for every h

s′i (h) = best response to s−i(h)

I By definition of vi , ui(s−i(h), s′i (h)) ≥ vi for every h

⇒ i ’s discounted average payoff to (s−i , s′i ) is ≥ vi

⇒ For s to be a Nash equilibrium of repeated game we need
i ’s payoff ≥ vi

⇒ Every Nash equilibrium payoff profile is enforceable
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Nash equilibrium payoffs

When players are very patient, set of Nash equilibrium payoff
profiles essentially = set of enforceable payoff profiles

Proposition (Nash folk theorem)
Let w be a strictly enforceable payoff profile of a strategic game
G. For all ε > 0 there exists δ < 1 such that if δ > δ then the
δ-discounted infinitely repeated game of G has a Nash
equilibrium whose payoff profile w ′ satisfies |w ′ − w | < ε.

Idea of proof
If any player j deviates, other players hold j down to her
minmax payoff vj subsequently
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Proof that every strictly enforceable payoff profile is
Nash equilibrium payoff profile

I Let w be strictly enforceable payoff profile

⇒ We can find outcome path ((a1, a2, . . . , ak ), (a1, a2, . . . , ak ),
. . .) of repeated game (where at is action profile of G for
t = 1, . . . , k ) for which payoff profile is arbitrarily close to w

I For each player j , let p−j be a list of actions of the other
players that holds j ’s payoff to its minmax value, vj :

p−j ∈ arg min
a−j∈A−j

(

max
aj∈Aj

uj(a−j , aj)

)

I Suppose each player i uses strategy that chooses her
action in outcome path till first period in which a single
player j 6= i deviates, after which it chooses action (p−j)i
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Proof continued: i ’s strategy

S1 : a1
i S2 : a2

i · · · Sk : ak
i

otherwise

otherwiseotherwise

· · · P1 : (p−1)i
a1 6= a1

1 &

aj = a1
j ∀j 6= 1

all outcomes

...

· · · Pi−1 : (p−(i−1))i
ai−1 6= a1

i−1 &

aj = a1
j ∀j 6= i − 1

all outcomes

· · · Pi+1 : (p−(i+1))i
ai+1 6= a1

i+1 &

aj = a1
j ∀j 6= i + 1

all outcomes

...

· · · Pn : (p−n)i
an 6= a1

n &

aj = a1
j ∀j 6= n

all outcomes

a1 6= a2
1 &

aj = a2
j ∀j 6= 1

...
ai−1 6= a2

i−1 &

aj = a2
j ∀j 6= i − 1

ai+1 6= a2
i+1 &

aj = a2
j ∀j 6= i + 1

...
an 6= a2

n &

aj = a2
j ∀j 6= n

a1 6= ak
1 &

aj = ak
j ∀j 6= 1

...
ai−1 6= ak

i−1 &

aj = ak
j ∀j 6= i − 1

ai+1 6= ak
i+1 &

aj = ak
j ∀j 6= i + 1

...

...
an 6= ak

n &

aj = ak
j ∀j 6= n
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Proof concluded

I The resulting strategy profile is a Nash equilibrium when
players are sufficiently patient because any player j who
deviates gets at most vj in every period following her
deviation

I Note that we do not need to worry about more than one
player deviating in a period, because Nash equilibrium
requires only that no single player can increase her payoff
by deviating
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Nash equilibrium payoffs of infinitely repeated
Prisoner’s Dilemma

Result implies that set of payoff pairs to Nash equilibria of
infinitely repeated Prisoner’s Dilemma is approximated, for δ
close to 1, by shaded region in figure

1 2 3 4

1

2

3

4

P1’s payoff→

↑
P2’s payoff
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