Economics 2030

Fall 2018

Martin J. Osborne

Solutions to Problem Set 5

- For any player *i*, the game has a Nash equilibrium in which player *i* bids v
 (the highest possible valuation) regardless of her valuation and every other player bids v
 regardless of her valuation. The outcome is that player *i* wins and pays v
 . Player *i* can do no better by bidding less; no other player can do better by bidding more, because unless she bids at least v
 she does not win, and if she makes such a bid her payoff is at best zero. (It is zero if her valuation is v
 , negative otherwise.)
- 2. The following argument is a variant of the one given in class for the case in which each player is risk neutral.

The expected payoff of a player with valuation v who bids b when every other player's strategy is given by the bidding function β is

$$(v-b)^{1/m} \Pr{\text{Highest bid is } b} = (v-b)^{1/m} \Pr{\text{All other bids } \le b}.$$

Now, any given player bids at most *b* if her valuation is at most $\beta^{-1}(b)$ (the inverse of β evaluated at the point *b*), so the probability that her bid is at most *b* is $F(\beta^{-1}(b)) = \beta^{-1}(b)$ (given that *F* is uniform on [0, 1]. Hence the probability that the bid of all n - 1 other players is at most *b* is $(\beta^{-1}(b))^{n-1}$. Thus the expected payoff in (1) is

$$(v-b)^{1/m}(\beta^{-1}(b))^{n-1}.$$

The best response of type v of any player when every other player uses the bidding function β is the value of b that maximizes this expected payoff, and hence satisfies the condition that the derivative of the function with respect to b is zero:

$$-(1/m)(v-b)^{(1/m)-1}(\beta^{-1}(b))^{n-1} + (v-b)^{1/m}(n-1)(\beta^{-1}(b))^{n-2}/\beta'(\beta^{-1}(b)) = 0.$$
(1)

(Recall that the derivative of β^{-1} at the point *b* is $1/\beta'(\beta^{-1}(b))$.)

Now, for $(\beta, ..., \beta)$ to be a Nash equilibrium, for every value of v the bid $\beta(v)$ must be the best response of a player with valuation v when every type v' of every other player bids $\beta(v')$. That is, $b = \beta(v)$ must satisfy (1). If $b = \beta(v)$ then $\beta^{-1}(b) = v$, so for all v we need

$$-(1/m)(v-\beta(v))^{(1/m)-1}v^{n-1} + (v-\beta(v))^{1/m}(n-1)v^{n-2}/\beta'(v) = 0$$

or

$$-(1/m)\beta'(v)v + (n-1)(v-\beta(v)) = 0.$$

To solve this differential equation, write it as

$$\beta'(v)v + m(n-1)\beta(v) = m(n-1)v,$$

multiply both sides by the integrating factor $v^{m(n-1)-1}$, and then integrate both sides, to get

$$v^{m(n-1)}\beta(v) = \left(\frac{m(n-1)}{m(n-1)+1}\right)v^{m(n-1)+1},$$

so that

$$\beta(v) = \left(\frac{m(n-1)}{m(n-1)+1}\right)v.$$

This function is increasing, so we conclude that the game has a Nash equilibrium in which each type v_i of each player *i* bids $(m(n-1)/[m(n-1)+1])v_i$.

In this equilibrium, the price paid by a bidder with valuation v who wins is (1 - 1/[m(n-1) + 1])v (the amount she bids). The expected price paid by a bidder in a second-price auction does not depend on the players' payoff functions. Thus this payoff is equal, by the revenue equivalence result, to the expected price paid by a bidder with valuation v who wins in a first-price auction in which each bidder is risk-neutral, namely (1 - 1/n)v. We have

$$\left(1 - \frac{1}{m(n-1)+1}\right) - \left(1 - \frac{1}{n}\right) = \frac{(m-1)(n-1)}{n(m(n-1)+1)},$$

which is positive because m > 1. Thus the expected price paid by a bidder with valuation v who wins is greater in a first-price auction than it is in a second-price auction. The probability that a bidder with any given valuation wins is the same in both auctions, so the auctioneer's expected revenue is greater in a first-price auction than it is in a second-price auction.

Figure 1. The first-price auction in Exercise 3.

3. The auctions may be modeled as Bayesian games as follows.

Players The two bidders, say 1 and 2.

States The two valuations 0 and 1 (of player 2).

- *Actions* Each player's set of actions is the set of possible bids (non-negative numbers).
- *Signals* The signal function τ_1 of player 1 satisfies $\tau_1(0) = \tau_1(1)$ and the signal function τ_2 of player 2 satisfies $\tau_2(0) \neq \tau_2(1)$.
- *Beliefs* Player 1's belief is that the state is 0 with probability p and 1 with probability 1 p. Player 2's belief when her signal is $\tau_2(0)$ is that the state is 0 with probability 1, and her belief when her signal is $\tau_2(1)$ is that it is 1 with probability 1.
- *Payoff functions* Player 1's payoff is 0 if her bid is less than player 2's bid, 1 P(b) if her bid is higher than player 2's bid, and $\frac{1}{2}(1 P(b))$ if her bid is the same as player 2's bid, where P(b) is either her bid (first-price auction) or player 2's bid (second-price auction). Player 2's payoff in state v is 0 if her bid is less than player 1's bid, v P(b) if her bid is higher than player 1's bid, and $\frac{1}{2}(v P(b))$ if her bid is the same as player 1's bid.

When each player is restricted to bid 0 or 1, the game that models a first-price auction is shown in Figure 1. The bid of 1 by player 2 of type 0 is strictly dominated by the bid of 0, so in any Nash equilibrium she bids 0. Thus in an equilibrium player 1 bids 0, and hence player 2 of type 1 bids 0. The auctioneer's revenue in this equilibrium is 0.

In a second-price auction, each player's only strategy that is not weakly dominated is that in which she bids her valuation. The resulting strategy pair is a Nash equilibrium. In this equilibrium the auctioneer's revenue is 1 - p (the probability that player 2's valuation is 1, in which case the price is 1).

We conclude that the auctioneer's revenue is higher in the secondprice auction than it is in the first-price auction.

 (a) If player 2 wins, she knows that player 1 has bid at most 1, implying that the painting is fake.

The strategy pair is not an equilibrium because any type $x_2 < 1$ of player 2 can profitably deviate, by the following argument. If type x_2 of player 2 bids $x_2 + 5$, she wins only if and only if the painting is fake; when she wins, she pays x_1 , so that for $x_1 > x_2$ she pays more than her valuation. If she bids x_2 , she wins only if the painting is fake *and* player 1's valuation is less than x_2 ; when she wins, she pays x_1 , as when she bids $x_2 + 5$, but now whenever she wins her payoff is positive. Thus (a) the set of cases in which she wins if she bids x_2 is a subset of the set of cases in which she bids x_2 she pays the same price as she does if she bids x_2 (i.e. if $x_1 > x_2$) she pays more than her valuation if she bids x_2 (i.e. if $x_1 > x_2$) she pays more than her valuation if she bids $b_2 + 5$. Thus the expected payoff of any type $x_2 < 1$ of player 2 is higher if she bids x_2 than if she bids $x_2 + 5$.

(b) Suppose that player 1 bids her valuation. Consider the optimal bid of type x_2 of player 2. Suppose that she bids b_2 . Then if $b_2 \in [0, 1]$, she wins only if the painting is both fake, which occurs with probability $\frac{1}{2}$, and player 1 bids less than b_2 , which occurs when player 1's valuation x_1 is less than b_2 , and hence when the painting is fake occurs with probability b_2 . If she wins in this case, her payoff is $x_2 - x_1$. The expected value of x_1 conditional on its being less than b_2 is $\frac{1}{2}b_2$, so if $b_2 \in [0, 1]$ then the expected payoff of type x_2 of player 2 is

$$\frac{1}{2}b_2(x_2-\frac{1}{2}b_2).$$

If $b_2 \in [10, 11]$ then type x_2 of player 2 wins if the painting is fake, regardless of player 1's valuation x_1 , *or* if the painting is authentic and $x_1 < b_2$. Conditional on the painting's being fake, the expected value of player 1's bid is $\frac{1}{2}$. If the painting is authentic, the probability that $x_1 < b_2$ is $b_2 - 10$, and the expected value of

player 1's valuation, and hence her bid, in this case is $\frac{1}{2}(10 + b_2)$. Thus the expected payoff of type x_2 of player 2 for $b_2 \in [10, 11]$ is

$$\frac{1}{2}(x_2 - \frac{1}{2}) + \frac{1}{2}(b_2 - 10)(10 + x_2 - \frac{1}{2}(10 + b_2)).$$

Thus the optimal bid of type x_2 of player 2, given player 1's strategy, is the value of b_2 that maximizes

$$\begin{cases} \frac{1}{2}b_2(x_2 - \frac{1}{2}b_2) & \text{if } b_2 \in [0, 1] \\ \frac{1}{2}(x_2 - \frac{1}{2}) + \frac{1}{2}(b_2 - 10)(10 + x_2 - \frac{1}{2}(10 + b_2)) & \text{if } b_2 \in [10, 11]. \end{cases}$$

The maximizer is x_2 if $x_2 \le \frac{1}{2}$ and $x_2 + 10$ if $x_2 > \frac{1}{2}$.

For player 1, bidding her valuation is her only weakly undominated action, as in a standard independent private values secondprice auction.

We conclude that the auction has an equilibrium in which each type x_1 of player 1 bids x_1 and type x_2 of player 2 bids x_2 if $x_2 \le \frac{1}{2}$ and $x_2 + 10$ if $x_2 > \frac{1}{2}$.

- 5. (a) The game is specified as follows.
 - **Players** {1,2}.
 - **States** The set of pairs (m_1, m_2) of amount of money, where $m_i \in [0, \infty)$ for i = 1, 2.
 - **Actions** The set of actions of each player *i* is the set $[0, \infty)$ of possible bids.
 - **Signals** The set of signals of each player *i* is $T_i = [0, \infty)$, and the signal function of each player *i* is $\tau_i(m_1, m_2) = m_i$.
 - **Beliefs** The prior belief of player *i* is any distribution that yields F_i as a posterior over m_i for every value of m_i .
 - **Preferences** The preferences of each player *i* are represented by the expected value of the Bernoulli payoff function that assigns the payoff $m_1 + m_2 b_j$ if $b_i > b_j$, $\frac{1}{2}(m_1 + m_2 b_j)$ if $b_i = b_j$, and 0 if $b_i < b_j$.
 - (b) Suppose that each type m_2 of player 2 bids km_2 . Then if some type m_1 of player 1 bids b_1 , her payoff when her opponent has type m_2 is

$$\begin{cases} m_1 + m_2 - km_2 & \text{if } b_1 > km_2 \\ 0 & \text{if } b_1 < km_2, \end{cases}$$

or, equivalently,

$$\begin{cases} m_1 + (1-k)m_2 & \text{if } m_2 < b_1/k \\ 0 & \text{if } m_2 > b_1/k. \end{cases}$$

She faces a distribution of possible opponents, so her expected payoff is the integral of this payoff over all possible values of m_2 . If you draw a graph of the function, you can see that if k < 1 then the integral is increasing in m_2 , so that it has no maximizer, whereas if k > 1 the value that maximized it is $m_1/(k-1)$. Alternatively, you can write the expected payoff of type m_1 of player 1 as

$$\int_0^{b_1/k} (m_1 + (1-k)m_2) f_2(m_2) \, dm_2.$$

This payoff is increasing in b_1 as long as the integrand is positive. Thus it is maximized for $b_1/k = m_1/(k-1)$.

That is, the best response of type m_1 of player 1 to a strategy profile in which each type m_2 of player 2 bids km_2 is the bid of $km_1/(k-1)$. Thus for the best response of player 1 to player 2's strategy to take the form $b_1 = km_1$ we need k/(k-1) = k, or k = 2, and the pair of strategies in which each type of each player *i* bids $2m_i$ is a Nash equilibrium.

(c) Suppose that player 2 of type m_2 bids k_2m_2 . Then by an argument like that in part (b), the optimal bid of type m_1 of player 1 is $k_2m_1/(k_2 - 1)$. If this bid is to take the form k_1m_1 then we need $k_1 = k_2/(k_2 - 1)$. Similarly, if player 1 of type m_1 bids k_1m_1 then the optimal bid of type m_2 of player 2 is $k_1m_2/(k_1 - 1)$, which takes the form k_2m_2 if and only if $k_2 = k_1/(k_1 - 1)$. This condition is the same as $k_1 = k_2/(k_2 - 1)$ (or $k_1k_2 = k_1 + k_2$), so any pair (k_1, k_2) that satisfies this equation yields an equilibrium. For example, $(3, \frac{3}{2})$ or $(4, \frac{4}{3})$.