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Solutions to Problem Set 5

1. For any player i, the game has a Nash equilibrium in which player i
bids v (the highest possible valuation) regardless of her valuation and
every other player bids v regardless of her valuation. The outcome is
that player i wins and pays v. Player i can do no better by bidding less;
no other player can do better by bidding more, because unless she bids
at least v she does not win, and if she makes such a bid her payoff is
at best zero. (It is zero if her valuation is v, negative otherwise.)

2. The following argument is a variant of the one given in class for the
case in which each player is risk neutral.

The expected payoff of a player with valuation v who bids b when
every other player’s strategy is given by the bidding function β is

(v− b)1/m Pr{Highest bid is b} = (v− b)1/m Pr{All other bids ≤ b}.

Now, any given player bids at most b if her valuation is at most β−1(b)
(the inverse of β evaluated at the point b), so the probability that her
bid is at most b is F(β−1(b)) = β−1(b) (given that F is uniform on
[0, 1]. Hence the probability that the bid of all n− 1 other players is at
most b is (β−1(b))n−1. Thus the expected payoff in (1) is

(v− b)1/m(β−1(b))n−1.

The best response of type v of any player when every other player
uses the bidding function β is the value of b that maximizes this ex-
pected payoff, and hence satisfies the condition that the derivative of
the function with respect to b is zero:

− (1/m)(v− b)(1/m)−1(β−1(b))n−1

+ (v− b)1/m(n− 1)(β−1(b))n−2/β′(β−1(b)) = 0. (1)

(Recall that the derivative of β−1 at the point b is 1/β′(β−1(b)).)
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Now, for (β, . . . , β) to be a Nash equilibrium, for every value of v the
bid β(v) must be the best response of a player with valuation v when
every type v′ of every other player bids β(v′). That is, b = β(v) must
satisfy (1). If b = β(v) then β−1(b) = v, so for all v we need

−(1/m)(v− β(v))(1/m)−1vn−1 + (v− β(v))1/m(n− 1)vn−2/β′(v) = 0

or
−(1/m)β′(v)v + (n− 1)(v− β(v)) = 0.

To solve this differential equation, write it as

β′(v)v + m(n− 1)β(v) = m(n− 1)v,

multiply both sides by the integrating factor vm(n−1)−1, and then inte-
grate both sides, to get

vm(n−1)β(v) =
(

m(n− 1)
m(n− 1) + 1

)

vm(n−1)+1,

so that

β(v) =
(

m(n− 1)
m(n− 1) + 1

)

v.

This function is increasing, so we conclude that the game has
a Nash equilibrium in which each type vi of each player i bids
(m(n− 1)/[m(n− 1) + 1])vi.

In this equilibrium, the price paid by a bidder with valuation v who
wins is (1− 1/[m(n− 1) + 1])v (the amount she bids). The expected
price paid by a bidder in a second-price auction does not depend on
the players’ payoff functions. Thus this payoff is equal, by the rev-
enue equivalence result, to the expected price paid by a bidder with
valuation v who wins in a first-price auction in which each bidder is
risk-neutral, namely (1− 1/n)v. We have

(

1−
1

m(n− 1) + 1

)

−
(

1−
1
n

)

=
(m− 1)(n− 1)

n(m(n− 1) + 1)
,

which is positive because m > 1. Thus the expected price paid by
a bidder with valuation v who wins is greater in a first-price auction
than it is in a second-price auction. The probability that a bidder with
any given valuation wins is the same in both auctions, so the auction-
eer’s expected revenue is greater in a first-price auction than it is in a
second-price auction.
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Figure 1. The first-price auction in Exercise 3.

3. The auctions may be modeled as Bayesian games as follows.

Players The two bidders, say 1 and 2.

States The two valuations 0 and 1 (of player 2).

Actions Each player’s set of actions is the set of possible bids (non-
negative numbers).

Signals The signal function τ1 of player 1 satisfies τ1(0) = τ1(1) and
the signal function τ2 of player 2 satisfies τ2(0) 6= τ2(1).

Beliefs Player 1’s belief is that the state is 0 with probability p and 1
with probability 1− p. Player 2’s belief when her signal is τ2(0)
is that the state is 0 with probability 1, and her belief when her
signal is τ2(1) is that it is 1 with probability 1.

Payoff functions Player 1’s payoff is 0 if her bid is less than player 2’s
bid, 1− P(b) if her bid is higher than player 2’s bid, and 1

2(1−
P(b)) if her bid is the same as player 2’s bid, where P(b) is ei-
ther her bid (first-price auction) or player 2’s bid (second-price
auction). Player 2’s payoff in state v is 0 if her bid is less than
player 1’s bid, v − P(b) if her bid is higher than player 1’s bid,
and 1

2(v− P(b)) if her bid is the same as player 1’s bid.

When each player is restricted to bid 0 or 1, the game that models
a first-price auction is shown in Figure 1. The bid of 1 by player 2 of
type 0 is strictly dominated by the bid of 0, so in any Nash equilibrium
she bids 0. Thus in an equilibrium player 1 bids 0, and hence player 2
of type 1 bids 0. The auctioneer’s revenue in this equilibrium is 0.

In a second-price auction, each player’s only strategy that is not
weakly dominated is that in which she bids her valuation. The re-
sulting strategy pair is a Nash equilibrium. In this equilibrium the
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auctioneer’s revenue is 1− p (the probability that player 2’s valuation
is 1, in which case the price is 1).

We conclude that the auctioneer’s revenue is higher in the second-
price auction than it is in the first-price auction.

4. (a) If player 2 wins, she knows that player 1 has bid at most 1, im-
plying that the painting is fake.

The strategy pair is not an equilibrium because any type x2 < 1
of player 2 can profitably deviate, by the following argument. If
type x2 of player 2 bids x2 + 5, she wins only if and only if the
painting is fake; when she wins, she pays x1, so that for x1 > x2
she pays more than her valuation. If she bids x2, she wins only if
the painting is fake and player 1’s valuation is less than x2; when
she wins, she pays x1, as when she bids x2 + 5, but now whenever
she wins her payoff is positive. Thus (a) the set of cases in which
she wins if she bids x2 is a subset of the set of cases in which she
wins if she bids b2 + 5, (b) in each case in which she wins if she
bids x2 she pays the same price as she does if she bids b2 + 5, and
(c) in every case in which she does not win if she bids x2 (i.e. if
x1 > x2) she pays more than her valuation if she bids b2 + 5. Thus
the expected payoff of any type x2 < 1 of player 2 is higher if she
bids x2 than if she bids x2 + 5.

(b) Suppose that player 1 bids her valuation. Consider the optimal
bid of type x2 of player 2. Suppose that she bids b2. Then if
b2 ∈ [0, 1], she wins only if the painting is both fake, which occurs
with probability 1

2 , and player 1 bids less than b2, which occurs
when player 1’s valuation x1 is less than b2, and hence when the
painting is fake occurs with probability b2. If she wins in this
case, her payoff is x2 − x1. The expected value of x1 conditional
on its being less than b2 is 1

2 b2, so if b2 ∈ [0, 1] then the expected
payoff of type x2 of player 2 is

1
2 b2(x2 − 1

2 b2).

If b2 ∈ [10, 11] then type x2 of player 2 wins if the painting is fake,
regardless of player 1’s valuation x1, or if the painting is authen-
tic and x1 < b2. Conditional on the painting’s being fake, the
expected value of player 1’s bid is 1

2 . If the painting is authentic,
the probability that x1 < b2 is b2 − 10, and the expected value of
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player 1’s valuation, and hence her bid, in this case is 1
2(10 + b2).

Thus the expected payoff of type x2 of player 2 for b2 ∈ [10, 11] is

1
2(x2 − 1

2) + 1
2(b2 − 10)(10 + x2 − 1

2(10 + b2)).

Thus the optimal bid of type x2 of player 2, given player 1’s strat-
egy, is the value of b2 that maximizes
{

1
2 b2(x2 − 1

2 b2) if b2 ∈ [0, 1]
1
2(x2 − 1

2) + 1
2(b2 − 10)(10 + x2 − 1

2(10 + b2)) if b2 ∈ [10, 11].

The maximizer is x2 if x2 ≤ 1
2 and x2 + 10 if x2 >

1
2 .

For player 1, bidding her valuation is her only weakly undomi-
nated action, as in a standard independent private values second-
price auction.

We conclude that the auction has an equilibrium in which each
type x1 of player 1 bids x1 and type x2 of player 2 bids x2 if x2 ≤ 1

2
and x2 + 10 if x2 >

1
2 .

5. (a) The game is specified as follows.

Players {1, 2}.
States The set of pairs (m1, m2) of amount of money, where mi ∈

[0, ∞) for i = 1, 2.

Actions The set of actions of each player i is the set [0, ∞) of
possible bids.

Signals The set of signals of each player i is Ti = [0, ∞), and the
signal function of each player i is τi(m1, m2) = mi.

Beliefs The prior belief of player i is any distribution that yields
Fj as a posterior over mj for every value of mi.

Preferences The preferences of each player i are represented by
the expected value of the Bernoulli payoff function that as-
signs the payoff m1 + m2 − bj if bi > bj,

1
2(m1 + m2 − bj) if

bi = bj, and 0 if bi < bj.

(b) Suppose that each type m2 of player 2 bids km2. Then if some
type m1 of player 1 bids b1, her payoff when her opponent has
type m2 is {

m1 + m2 − km2 if b1 > km2

0 if b1 < km2,

5



or, equivalently,
{

m1 + (1− k)m2 if m2 < b1/k

0 if m2 > b1/k.

She faces a distribution of possible opponents, so her expected
payoff is the integral of this payoff over all possible values of m2.
If you draw a graph of the function, you can see that if k < 1
then the integral is increasing in m2, so that it has no maximizer,
whereas if k > 1 the value that maximized it is m1/(k− 1). Alter-
natively, you can write the expected payoff of type m1 of player 1
as ∫ b1/k

0
(m1 + (1− k)m2) f2(m2) dm2.

This payoff is increasing in b1 as long as the integrand is positive.
Thus it is maximized for b1/k = m1/(k− 1).

That is, the best response of type m1 of player 1 to a strategy
profile in which each type m2 of player 2 bids km2 is the bid of
km1/(k− 1). Thus for the best response of player 1 to player 2’s
strategy to take the form b1 = km1 we need k/(k − 1) = k,
or k = 2, and the pair of strategies in which each type of each
player i bids 2mi is a Nash equilibrium.

(c) Suppose that player 2 of type m2 bids k2m2. Then by an argu-
ment like that in part (b), the optimal bid of type m1 of player 1 is
k2m1/(k2 − 1). If this bid is to take the form k1m1 then we need
k1 = k2/(k2 − 1). Similarly, if player 1 of type m1 bids k1m1 then
the optimal bid of type m2 of player 2 is k1m2/(k1 − 1), which
takes the form k2m2 if and only if k2 = k1/(k1 − 1). This condi-
tion is the same as k1 = k2/(k2 − 1) (or k1k2 = k1 + k2), so any
pair (k1, k2) that satisfies this equation yields an equilibrium. For
example, (3, 3

2) or (4, 4
3).
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