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Solutions to Problem Set 5

1. For any player i, the game has a Nash equilibrium in which player i
bids 7 (the highest possible valuation) regardless of her valuation and
every other player bids v regardless of her valuation. The outcome is
that player i wins and pays v. Player i can do no better by bidding less;
no other player can do better by bidding more, because unless she bids
at least ¥ she does not win, and if she makes such a bid her payoff is
at best zero. (It is zero if her valuation is 7, negative otherwise.)

2. The following argument is a variant of the one given in class for the
case in which each player is risk neutral.

The expected payoff of a player with valuation v who bids b when
every other player’s strategy is given by the bidding function f is

(v — b)L/™ Pr{Highest bid is b} = (v — b)!/" Pr{All other bids < b}.

Now, any given player bids at most b if her valuation is at most =1 (b)
(the inverse of B evaluated at the point b), so the probability that her
bid is at most b is F(B~1(b)) = B~1(b) (given that F is uniform on
[0,1]. Hence the probability that the bid of all n — 1 other players is at
most b is (B71(b))" 1. Thus the expected payoff in (1) is

(o —b)"™(p~ (b))" .

The best response of type v of any player when every other player
uses the bidding function S is the value of b that maximizes this ex-
pected payoff, and hence satisfies the condition that the derivative of
the function with respect to b is zero:

= (1/m)(v—0)/™ (B (b))
+ (0= )" (n = 1)(B71(0))" /B (87 (b)) = 0. (1)

(Recall that the derivative of B~! at the point bis 1/8'(871(b)).)



Now, for (B, ..., B) to be a Nash equilibrium, for every value of v the
bid B(v) must be the best response of a player with valuation v when
every type v of every other player bids B(v’). Thatis, b = p(v) must
satisfy (1). If b = B(v) then B~1(b) = v, so for all v we need

—(1/m)(v = p(0)) V"0 4 (0 B(0)) /" (n — 1)0" 2/ B/ (v) = 0

—(1/m)B (v)o+ (n — 1)(v — B(0)) = 0.

To solve this differential equation, write it as

B (v)o+m(n—1)B(v) =m(n—1)o,

(n=1)—

multiply both sides by the integrating factor v™ !, and then inte-

grate both sides, to get

vm(n—l)ﬁ(v) _ (m?;(i I)l_{)— 1) Um(n_1)+1,

o= (5171

This function is increasing, so we conclude that the game has
a Nash equilibrium in which each type v; of each player i bids
(m(n—1)/[m(n—1)+1])v;.

In this equilibrium, the price paid by a bidder with valuation v who
wins is (1 —1/[m(n — 1) + 1])v (the amount she bids). The expected
price paid by a bidder in a second-price auction does not depend on
the players” payoff functions. Thus this payoff is equal, by the rev-
enue equivalence result, to the expected price paid by a bidder with
valuation v who wins in a first-price auction in which each bidder is
risk-neutral, namely (1 —1/n)v. We have

1 1 1 1y (m—-1)(n—-1)

( m(ﬂ—1)+1) ( n) - n(m(n—1)+1)

which is positive because m > 1. Thus the expected price paid by
a bidder with valuation v who wins is greater in a first-price auction
than it is in a second-price auction. The probability that a bidder with
any given valuation wins is the same in both auctions, so the auction-

eer’s expected revenue is greater in a first-price auction than it is in a
second-price auction.

so that
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Figure 1. The first-price auction in Exercise 3.

3. The auctions may be modeled as Bayesian games as follows.

Players The two bidders, say 1 and 2.
States The two valuations 0 and 1 (of player 2).

Actions Each player’s set of actions is the set of possible bids (non-
negative numbers).

Signals The signal function 7j of player 1 satisfies 71(0) = 71(1) and
the signal function 1, of player 2 satisfies 72(0) # 12(1).

Beliefs Player 1’s belief is that the state is 0 with probability p and 1
with probability 1 — p. Player 2’s belief when her signal is 1,(0)
is that the state is 0 with probability 1, and her belief when her
signal is 7o(1) is that it is 1 with probability 1.

Payoff functions Player 1’s payoff is 0 if her bid is less than player 2’s
bid, 1 — P(b) if her bid is higher than player 2’s bid, and (1 —
P(b)) if her bid is the same as player 2’s bid, where P(b) is ei-
ther her bid (first-price auction) or player 2’s bid (second-price
auction). Player 2’s payoff in state v is 0 if her bid is less than
player 1’s bid, v — P(b) if her bid is higher than player 1’s bid,
and (v — P(b)) if her bid is the same as player 1's bid.

When each player is restricted to bid 0 or 1, the game that models
a first-price auction is shown in Figure 1. The bid of 1 by player 2 of
type 0 is strictly dominated by the bid of 0, so in any Nash equilibrium
she bids 0. Thus in an equilibrium player 1 bids 0, and hence player 2
of type 1 bids 0. The auctioneer’s revenue in this equilibrium is 0.

In a second-price auction, each player’s only strategy that is not
weakly dominated is that in which she bids her valuation. The re-
sulting strategy pair is a Nash equilibrium. In this equilibrium the
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auctioneer’s revenue is 1 — p (the probability that player 2’s valuation
is 1, in which case the price is 1).

We conclude that the auctioneer’s revenue is higher in the second-
price auction than it is in the first-price auction.

(a)

(b)

If player 2 wins, she knows that player 1 has bid at most 1, im-
plying that the painting is fake.

The strategy pair is not an equilibrium because any type x, < 1
of player 2 can profitably deviate, by the following argument. If
type x; of player 2 bids x; + 5, she wins only if and only if the
painting is fake; when she wins, she pays x1, so that for x; > x,
she pays more than her valuation. If she bids x,, she wins only if
the painting is fake and player 1’s valuation is less than x;; when
she wins, she pays x1, as when she bids x; + 5, but now whenever
she wins her payoff is positive. Thus (a) the set of cases in which
she wins if she bids x5 is a subset of the set of cases in which she
wins if she bids b, + 5, (b) in each case in which she wins if she
bids x; she pays the same price as she does if she bids b, + 5, and
(c) in every case in which she does not win if she bids x (i.e. if
x1 > x7) she pays more than her valuation if she bids b, + 5. Thus
the expected payoff of any type x, < 1 of player 2 is higher if she
bids x; than if she bids x» + 5.

Suppose that player 1 bids her valuation. Consider the optimal
bid of type x; of player 2. Suppose that she bids bp. Then if
by € [0,1], she wins only if the painting is both fake, which occurs
with probability 3, and player 1 bids less than b,, which occurs
when player 1’s valuation x is less than by, and hence when the
painting is fake occurs with probability by. If she wins in this
case, her payoff is xp — x;. The expected value of x; conditional
on its being less than b, is %bz, so if by € [0,1] then the expected
payoff of type x, of player 2 is

%bz()(z — %bz)

If b, € [10,11] then type x; of player 2 wins if the painting is fake,
regardless of player 1’s valuation x1, or if the painting is authen-
tic and x; < by. Conditional on the painting’s being fake, the
expected value of player 1’s bid is 1. If the painting is authentic,
the probability that x; < by is by — 10, and the expected value of
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(b)

player 1’s valuation, and hence her bid, in this case is %(10 + by).
Thus the expected payoff of type x; of player 2 for b, € [10,11] is

L — 1)+ 1(b2 — 10)(10 + x2 — 1(10 + B2)).

Thus the optimal bid of type x, of player 2, given player 1’s strat-
egy, is the value of b, that maximizes

%bz(.’(z - %bz) if by € [0/ 1]
T(xa—3) + (b2 —10)(10 + xo — 3(10+ b2))  if by € [10,11].

The maximizer is x; if xp < % and xp + 10 if xp > %

For player 1, bidding her valuation is her only weakly undomi-
nated action, as in a standard independent private values second-
price auction.

We conclude that the auction has an equilibrium in which each
type x; of player 1 bids x; and type x, of player 2 bids x, if x, < 3
and x, + 10 if xp > 3.

The game is specified as follows.

Players {1,2}.

States The set of pairs (1, my) of amount of money, where m; €
[0,00) fori=1,2.

Actions The set of actions of each player i is the set [0,00) of
possible bids.

Signals The set of signals of each player i is T; = [0, %), and the
signal function of each player i is 7;(my, my) = m;.

Beliefs The prior belief of player i is any distribution that yields
F; as a posterior over m; for every value of m;.

Preferences The preferences of each player i are represented by
the expected value of the Bernoulli payoff function that as-
signs the payoff my + my — b; if b; > b, %(ml + my — bj) if
b; = b], and 0if b; < b]

Suppose that each type m;, of player 2 bids kmj. Then if some

type m of player 1 bids by, her payoff when her opponent has

type my is
my + mo — kmy if by > kmy
0 if by < kmy,



(©)

or, equivalently,

my+ (1 —k)my ifmy < by/k
0 if my > by /k.

She faces a distribution of possible opponents, so her expected
payoff is the integral of this payoff over all possible values of m;.
If you draw a graph of the function, you can see that if k < 1
then the integral is increasing in mjy, so that it has no maximizer,
whereas if k > 1 the value that maximized itis m/(k —1). Alter-
natively, you can write the expected payoff of type m; of player 1
as

by /k
/0 (1 + (1 K)ma) fa(ma) dma.

This payoff is increasing in by as long as the integrand is positive.
Thus it is maximized for by /k = my/(k —1).

That is, the best response of type m; of player 1 to a strategy
profile in which each type m; of player 2 bids km; is the bid of
kmq /(k —1). Thus for the best response of player 1 to player 2’s
strategy to take the form b; = km; we need k/(k—1) = k,
or k = 2, and the pair of strategies in which each type of each
player i bids 2m; is a Nash equilibrium.

Suppose that player 2 of type my bids kymy. Then by an argu-
ment like that in part (b), the optimal bid of type m; of player 1 is
komy /(ky — 1). If this bid is to take the form kym; then we need
ki1 = ko/(kp — 1). Similarly, if player 1 of type m; bids kym; then
the optimal bid of type m;, of player 2 is kymy/(ky — 1), which
takes the form kpmy if and only if k; = ki/(k; — 1). This condi-
tion is the same as ky = ky/ (ko — 1) (or kika = kq + kp), so any
pair (k, kp) that satisfies this equation yields an equilibrium. For
example, (3,3) or (4, 3).



