ECO2030: Microeconomic Theory II, module 1 Lecture 8

Martin J. Osborne

Department of Economics University of Toronto

2018.11.22

© 2018 by Martin J. Osborne

Bargaining

Finite horizon

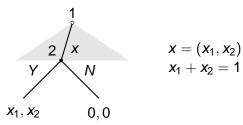
Infinite horizon SPE Characterization of SPE Properties of SPE Many players

Risk of breakdown

Outside options

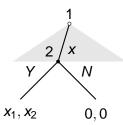
Outside options vs. breakdown

Ultimatum game with pie of size 1



Bargaining

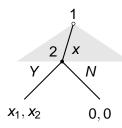
Ultimatum game with pie of size 1



Unique SPE Offer (1,0)

Bargaining

Ultimatum game with pie of size 1

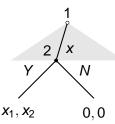


Unique SPE Offer (1,0)

Accept all offers

SPE payoffs: (1,0)

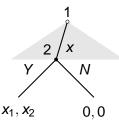
Ultimatum game with pie of size 1



Unique SPE Offer (1,0)

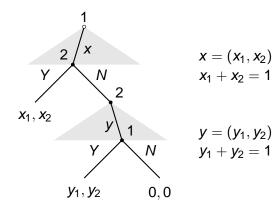
- SPE payoffs: (1,0)
- Why is SPE outcome so one-sided?

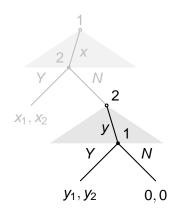
Ultimatum game with pie of size 1



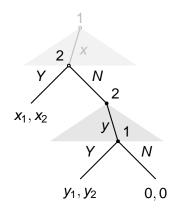
Unique SPE Offer (1,0) Accept all offers

- SPE payoffs: (1,0)
- Why is SPE outcome so one-sided?
- Should give player 2 the opportunity to counteroffer?

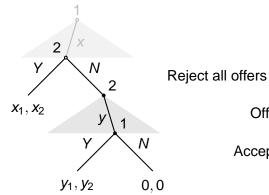




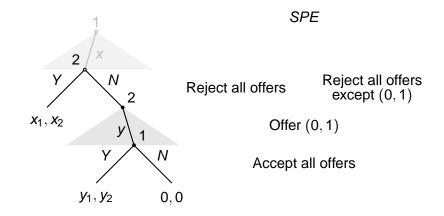
Offer (0, 1)

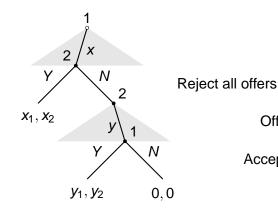


Offer (0, 1)



Offer (0, 1)

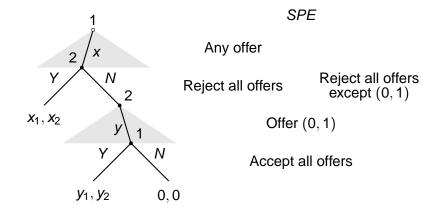


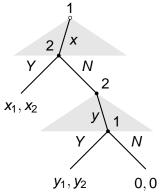


SPE

Reject all offers except (0, 1)

Offer (0, 1)





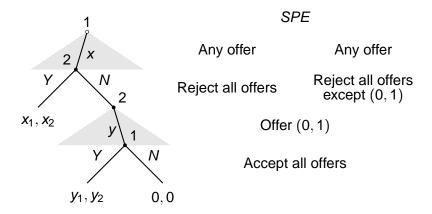
Any offer

Reject all offers

Any offer

Reject all offers except (0, 1)

Offer (0, 1)

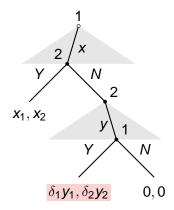


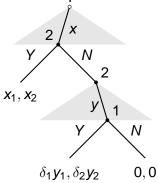
 \Rightarrow in every subgame perfect equilibrium payoffs are (0, 1)

Extreme outcome is result of delay being costless?

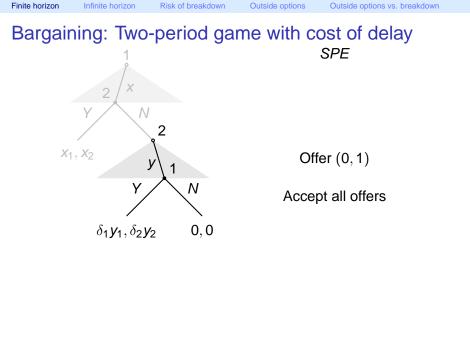
- Extreme outcome is result of delay being costless?
- Suppose delay is costly: players discount payoffs

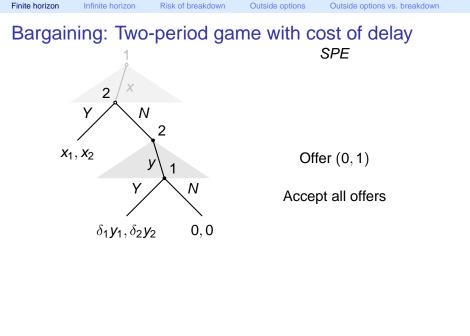
- Extreme outcome is result of delay being costless?
- Suppose delay is costly: players discount payoffs

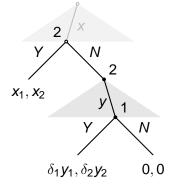




Finite horizon Risk of breakdown Outside options Infinite horizon Outside options vs. breakdown Bargaining: Two-period game with cost of delay SPE X Ν 2 *X*₁, *X*₂ 1 Y Ν $\delta_1 y_1, \delta_2 y_2$ 0,0

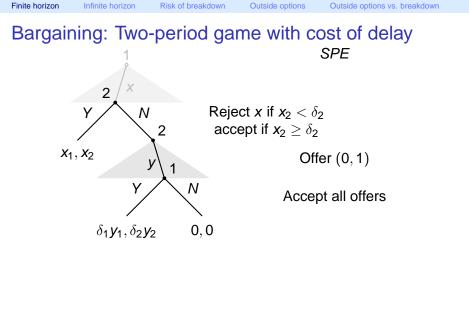


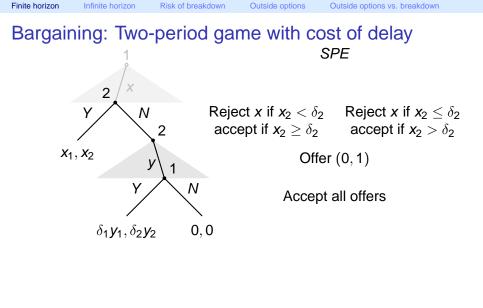


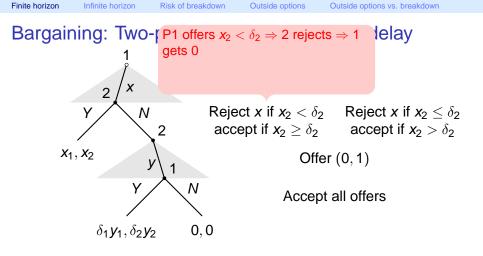


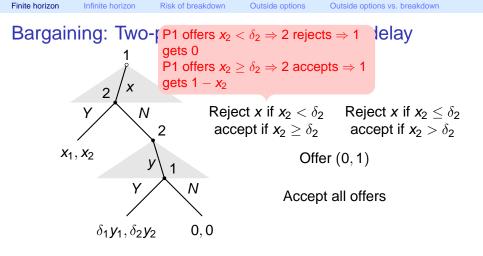
P2 rejects offer $x \Rightarrow$ gets 1 in period 2 \Rightarrow payoff δ_2

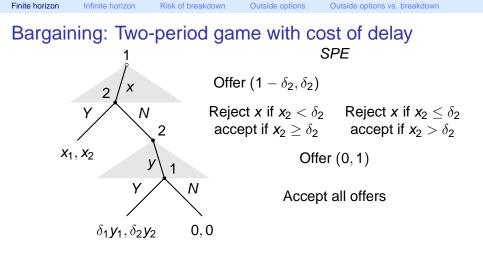
Offer (0, 1)

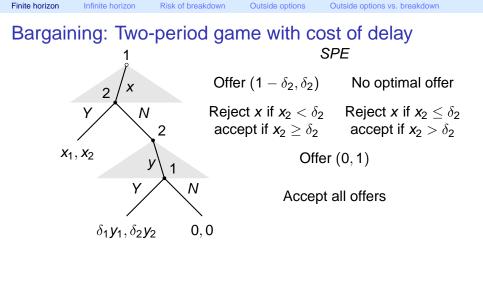


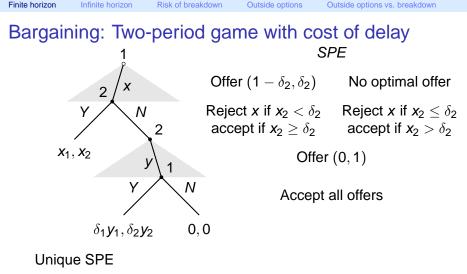






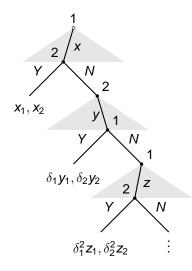


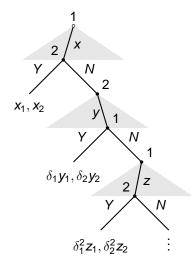




Period 1 P1 proposes $(1 - \delta_2, \delta_2)$, P2 accepts $(x_1, x_2) \Leftrightarrow x_2 \ge \delta_2$ Period 2 P2 always proposes (0, 1) P1 always accepts a

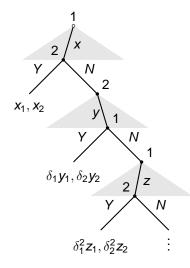
Period 2 P2 always proposes (0, 1), P1 always accepts all proposals





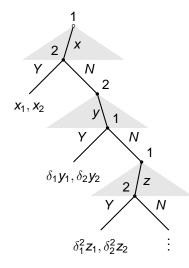
Notes

 Every subgame starting with proposal by P1 is *identical*



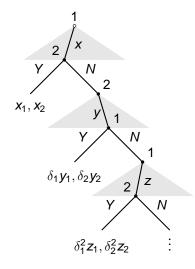
Notes

- Every subgame starting with proposal by P1 is identical
- Every subgame starting with proposal by P2 is identical



Notes

- Every subgame starting with proposal by P1 is identical
- Every subgame starting with proposal by P2 is identical
- Every subgame starting with response by P1 to proposal y of P2 is identical



Notes

- Every subgame starting with proposal by P1 is identical
- Every subgame starting with proposal by P2 is identical
- Every subgame starting with response by P1 to proposal y of P2 is identical
- Every subgame starting with response by P2 to proposal x of P1 is identical

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players Histories

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$ Histories

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$ Histories \emptyset

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t)$, $t \ge 1$

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence
$$(x^1, N, x^2, N, \dots, x^t)$$
, $t \ge 1$
every sequence $(x^1, N, x^2, N, \dots, x^t, Y)$, $t \ge 1$

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, ..., x^t)$, $t \ge 1$ Terminal every sequence $(x^1, N, x^2, N, ..., x^t, Y)$, $t \ge 1$

Outside options vs. breakdown

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

Terminal ev

every sequence
$$(x^1, N, x^2, N, \dots, x^t)$$
, $t \ge 1$
every sequence $(x^1, N, x^2, N, \dots, x^t, Y)$, $t \ge 1$
every sequence $(x^1, N, x^2, N, \dots, x^t, N)$, $t \ge 1$

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t > 1$ **Terminal** every sequence $(x^1, N, x^2, N, \dots, x^t, Y), t \ge 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ every infinite sequence $(x^1, N, x^2, N, ...)$ where each x^r is pair of numbers that sum to 1

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t \ge 1$ Terminalevery sequence $(x^1, N, x^2, N, \dots, x^t, Y), t \ge 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ Terminalevery infinite sequence (x^1, N, x^2, N, \dots) where each x^r is pair of numbers that sum to 1

Player function

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t > 1$ Terminal every sequence $(x^1, N, x^2, N, \dots, x^t, Y), t > 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ **Terminal** every infinite sequence $(x^1, N, x^2, N, ...)$ where each x^r is pair of numbers that sum to 1 Player function $P(\emptyset) = 1$ and for all (x^1, \ldots, x^t)

 $P(x^1, N, x^2, N, \dots, x^t) = P(x^1, N, x^2, N, \dots, x^t, N) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2 & \text{if } t \text{ is odd} \end{cases}$

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t \ge 1$ Terminalevery sequence $(x^1, N, x^2, N, \dots, x^t, Y), t \ge 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ terminalevery infinite sequence (x^1, N, x^2, N, \dots) where each x^r is pair of numbers that sum to 1

Player function $P(\emptyset) = 1$ and for all (x^1, \ldots, x^t)

 $P(x^1, N, x^2, N, \dots, x^t) = P(x^1, N, x^2, N, \dots, x^t, N) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2 & \text{if } t \text{ is odd} \end{cases}$

Preferences For i = 1, 2, player *i*'s payoff to terminal history $(x^1, N, x^2, N, \dots, x^t, Y)$ is $\delta_i^{t-1} x_i^t$ ($0 < \delta_i < 1$),

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t > 1$ Terminal every sequence $(x^1, N, x^2, N, \dots, x^t, Y), t > 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ **Terminal** every infinite sequence $(x^1, N, x^2, N, ...)$ where each x^r is pair of numbers that sum to 1 Player function $P(\emptyset) = 1$ and for all (x^1, \ldots, x^t)

 $P(x^1, N, x^2, N, \dots, x^t) = P(x^1, N, x^2, N, \dots, x^t, N) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2 & \text{if } t \text{ is odd} \end{cases}$

Preferences For i = 1, 2, player *i*'s payoff to terminal history $(x^1, N, x^2, N, ..., x^t, Y)$ is $\delta_i^{t-1} x_i^t$ (0 < δ_i < 1), and her payoff to every (infinite) terminal history $(x^1, N, x^2, N, ...)$ is 0

A bargaining game of alternating offers is an extensive game with perfect information with the following components

Players $N = \{1, 2\}$

Histories Ø

every sequence $(x^1, N, x^2, N, \dots, x^t), t > 1$ Terminal every sequence $(x^1, N, x^2, N, \dots, x^t, Y), t > 1$ every sequence $(x^1, N, x^2, N, \dots, x^t, N), t \ge 1$ **Terminal** every infinite sequence $(x^1, N, x^2, N, ...)$ where each x^r is pair of numbers that sum to 1

Player function $P(\emptyset) = 1$ and for all (x^1, \ldots, x^t)

 $P(x^1, N, x^2, N, \dots, x^t) = P(x^1, N, x^2, N, \dots, x^t, N) = \begin{cases} 1 & \text{if } t \text{ is even} \\ 2 & \text{if } t \text{ is odd} \end{cases}$

Book considers more general preferences

Preferences For i = 1, 2, player i's payoff to terminal history $(x^1, N, x^2, N, \dots, x^t, Y)$ is $\delta_i^{t-1} x_i^t$ (0 < δ_i < 1), and her payoff to every (infinite) terminal history $(x^1, N, x^2, N, ...)$ is 0

- Stationary structure of game suggests SPE exists in which
 - P1 always makes same proposal
 - P2 always makes same proposal
 - P1 always responds to a proposal in the same way
 - P2 always responds to a proposal in the same way

Step 1

Stationary structure of game suggests SPE exists in which

- P1 always makes same proposal
- P2 always makes same proposal
- P1 always responds to a proposal in the same way
- P2 always responds to a proposal in the same way
- Reasonable guess: game has SPE in which each player's response has cutoff form: accept high offers, reject low ones

Step 1

- Stationary structure of game suggests SPE exists in which
 - P1 always makes same proposal
 - P2 always makes same proposal
 - P1 always responds to a proposal in the same way
 - P2 always responds to a proposal in the same way
- Reasonable guess: game has SPE in which each player's response has cutoff form: accept high offers, reject low ones
- Any strategy pair that satisfies these conditions has form
 - ▶ player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$

for some proposals w^* , x^* , y^* , and z^*

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 \Rightarrow

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

$$\Rightarrow$$
 $x_2^* \ge w_2^*$ and $z_1^* \ge y_1^*$

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 $\Rightarrow x_2^* \ge w_2^* \text{ and } z_1^* \ge y_1^*$

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 $\Rightarrow x_2^* \ge w_2^* \text{ and } z_1^* \ge y_1^*$

- Is SPE with $x_2^* > w_2^*$ possible?
 - $x_2^* > w_2^* \Rightarrow P2$ willing to accept less than she is offered

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 $\Rightarrow x_2^* \ge w_2^* \text{ and } z_1^* \ge y_1^*$

- $x_2^* > w_2^* \Rightarrow P2$ willing to accept less than she is offered
- ⇒ P1 can increase payoff by reducing offer

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 $\Rightarrow x_2^* \ge w_2^* \text{ and } z_1^* \ge y_1^*$

- $x_2^* > w_2^* \Rightarrow P2$ willing to accept less than she is offered
- ⇒ P1 can increase payoff by reducing offer

$$\Rightarrow$$
 In SPE, $x_2^* = w_2^*$

Step 2

- Can we find proposals w*, x*, y*, and z* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes z^* and accepts w iff $w_2 \ge w_2^*$
- In SPE of two-period game, every equilibrium proposal is accepted ... guess that infinite game has equilibrium with same property

 $\Rightarrow x_2^* \ge w_2^* \text{ and } z_1^* \ge y_1^*$

- $x_2^* > w_2^* \Rightarrow P2$ willing to accept less than she is offered
- ⇒ P1 can increase payoff by reducing offer
- \Rightarrow In SPE, $x_2^* = w_2^*$
 - Similarly $\overline{z}_1^* = \overline{y_1^*}$

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x,

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x,

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*,

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*,

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y^* , which P1 accepts,

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*, which P1 accepts, yielding P2 the payoff y₂* with one period of delay

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*, which P1 accepts, yielding P2 the payoff y₂* with one period of delay
 - So P2 optimally
 - ► rejects x if x₂ < δ₂y₂*

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*, which P1 accepts, yielding P2 the payoff y₂* with one period of delay
 - So P2 optimally
 - rejects x if x₂ < δ₂y₂*
 - accepts x if x₂ > δ₂y₂*

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*, which P1 accepts, yielding P2 the payoff y₂* with one period of delay
 - So P2 optimally
 - rejects x if $x_2 < \delta_2 y_2^*$
 - ► accepts x if x₂ > δ₂y₂^{*}
 - is indifferent between accepting and rejecting if $x_2 = \delta_2 y_2^*$

Step 3

- Can we find proposals x* and y* such that following strategy pair is SPE?
 - ▶ Player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
 - ▶ Player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$
- Consider subgame in which first move is response by P2 to proposal x of P1
 - If P2 accepts x, her payoff is x₂
 - If P2 rejects x, she proposes y*, which P1 accepts, yielding P2 the payoff y^{*}₂ with one period of delay
 - So P2 optimally
 - rejects x if $x_2 < \delta_2 y_2^*$
 - ► accepts x if x₂ > δ₂y₂^{*}
 - ► is indifferent between accepting and rejecting if $x_2 = \delta_2 y_2^*$

▶ We seek SPE in which she accepts iff $x_2 \ge x_2^*$, so we need $x_2^* = \delta_2 y_2^*$

Bargaining game of alternating offers: SPE Step 3 continued

Similar argument for response by P1 to proposal of P2

$$\Rightarrow y_1^* = \delta_1 x_1^*$$

Bargaining game of alternating offers: SPE Step 3 continued

- ► Similar argument for response by P1 to proposal of P2 $\Rightarrow y_1^* = \delta_1 x_1^*$
- Thus for strategy pair to be SPE we need

$$\begin{aligned} \mathbf{x}_2^* &= \delta_2 \mathbf{y}_2^* \\ \mathbf{y}_1^* &= \delta_1 \mathbf{x}_1^* \end{aligned}$$

Bargaining game of alternating offers: SPE Step 3 continued

- ► Similar argument for response by P1 to proposal of P2 $\Rightarrow y_1^* = \delta_1 x_1^*$
- Thus for strategy pair to be SPE we need

$$\begin{aligned} \mathbf{x}_2^* &= \delta_2 \mathbf{y}_2^* \\ \mathbf{y}_1^* &= \delta_1 \mathbf{x}_1^* \end{aligned}$$

• Using $x_2^* = 1 - x_1^*$ and $y_2^* = 1 - y_1^*$, we get

$$x_1^* = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$
$$y_1^* = \frac{\delta_1 (1 - \delta_2)}{1 - \delta_1 \delta_2}$$

Conclusion Candidate for SPE is strategy pair *s*^{*} in which

- ▶ player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
- ► player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$ where

$$x_1^* = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$
 and $y_1^* = \frac{\delta_1 (1 - \delta_2)}{1 - \delta_1 \delta_2}$

Conclusion Candidate for SPE is strategy pair s^* in which

- ▶ player 1 always proposes x^* and accepts y iff $y_1 \ge y_1^*$
- ► player 2 always proposes y^* and accepts x iff $x_2 \ge x_2^*$ where

$$x_1^* = rac{1-\delta_2}{1-\delta_1\delta_2}$$
 and $y_1^* = rac{\delta_1(1-\delta_2)}{1-\delta_1\delta_2}$

Proposition

The strategy pair s^* is the unique subgame perfect equilibrium of the bargaining game of alternating offers

Proof that s* is subgame perfect equilibrium

 In arbitrary infinite horizon game, strategy profiles that satisfy one-deviation property may not be subgame perfect equilibria

Proof that s* is subgame perfect equilibrium

- In arbitrary infinite horizon game, strategy profiles that satisfy one-deviation property may not be subgame perfect equilibria
- But this property *does* hold in bargaining game of alternating offers (in which the single infinite history is the worst terminal history for each player)

Proof that s* is subgame perfect equilibrium

- In arbitrary infinite horizon game, strategy profiles that satisfy one-deviation property may not be subgame perfect equilibria
- But this property *does* hold in bargaining game of alternating offers (in which the single infinite history is the worst terminal history for each player)

Proposition

A strategy profile in the bargaining game of alternating offers is a subgame perfect equilibrium if and only if it satisfies the one-deviation property

Proof that s* is subgame perfect equilibrium

 s_1^* : P1 always proposes x^* and accepts y iff $y_1 \ge y_1^* = \delta_1 x_1^*$

 s_2^* : P2 always proposes y^* and accepts x iff $x_2 \ge x_2^* = \delta_2 y_2^*$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

Will show that s* satisfies one-deviation property

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

- ▶ Will show that *s*^{*} satisfies one-deviation property
- > 2 types of subgame: first move offer, first move response

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

2 types of subgame: first move offer, first move response Subgame in which first move is offer

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

2 types of subgame: first move offer, first move response Subgame in which first move is offer

▶ P1 uses
$$s_1^* \Rightarrow$$

Bargaining game of alternating offers: SPE Proof that *s*^{*} is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

2 types of subgame: first move offer, first move response Subgame in which first move is offer

▶ P1 uses
$$s_1^* \Rightarrow$$

Bargaining game of alternating offers: SPE Proof that *s*^{*} is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

2 types of subgame: first move offer, first move response Subgame in which first move is offer

• P1 uses
$$s_1^* \Rightarrow$$
 P1 proposes x^*

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

2 types of subgame: first move offer, first move response Subgame in which first move is offer

• P1 uses
$$s_1^* \Rightarrow$$
 P1 proposes x^*

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

- ► Will show that *s*^{*} satisfies one-deviation property
- 2 types of subgame: first move offer, first move response Subgame in which first move is offer
 - Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
 - ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- > P1 deviates from s_1^* in first period of subgame:

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- > P1 deviates from s_1^* in first period of subgame:
 - P1 offers P2 > $x_2^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

- ► Will show that *s*^{*} satisfies one-deviation property
- 2 types of subgame: first move offer, first move response Subgame in which first move is offer
 - Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
 - ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
 - > P1 deviates from s_1^* in first period of subgame:
 - P1 offers P2 > $x_2^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

- ► Will show that *s*^{*} satisfies one-deviation property
- 2 types of subgame: first move offer, first move response Subgame in which first move is offer
 - Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
 - ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
 - > P1 deviates from s_1^* in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - ▶ P1 offers P2 < $x_2^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- > P1 deviates from s_1^* in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < $x_2^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from *s*^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < $x_2^* \Rightarrow$ P2 rejects

Proof that *s*^{*} is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < $x_2^* \Rightarrow$ P2 rejects

Proof that *s*^{*} is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - ▶ P1 offers P2 < $x_2^* \Rightarrow$ P2 rejects, P2 proposes $y^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - ▶ P1 offers P2 < $x_2^* \Rightarrow$ P2 rejects, P2 proposes $y^* \Rightarrow$

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < x₂^{*} ⇒ P2 rejects, P2 proposes y^{*} ⇒ P1 accepts, obtaining payoff δ₁y₁^{*}

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

► Will show that *s*^{*} satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < x₂^{*} ⇒ P2 rejects, P2 proposes y^{*} ⇒ P1 accepts, obtaining payoff δ₁y₁^{*}
- $\delta_1 y_1^* = \delta_1^2 x_1^* < x_1^*$, so P1's proposing x^* is optimal

Proof that s* is subgame perfect equilibrium

*s*₁^{*}: P1 always proposes *x*^{*} and accepts *y* iff $y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts *x* iff $x_2 \ge x_2^* = \delta_2 y_2^*$

Will show that s* satisfies one-deviation property

- Suppose offer is made by P1, and fix P2's strategy at s^{*}₂
- ▶ P1 uses $s_1^* \Rightarrow$ P1 proposes x^* , which P2 accepts \Rightarrow P1's payoff is x_1^*
- ▶ P1 deviates from s^{*}₁ in first period of subgame:
 - ▶ P1 offers P2 > $x_2^* \Rightarrow$ P2 accepts \Rightarrow P1's payoff is < x_1^*
 - P1 offers P2 < x₂^{*} ⇒ P2 rejects, P2 proposes y^{*} ⇒ P1 accepts, obtaining payoff δ₁y₁^{*}
- $\delta_1 y_1^* = \delta_1^2 x_1^* < x_1^*$, so P1's proposing x^* is optimal
- Symmetric argument if first offer is made by P2

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$

 s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

Proof that *s*^{*} is subgame perfect equilibrium continued

s₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$

 s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow

Bargaining game of alternating offers: SPE Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow

Bargaining game of alternating offers: SPE Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$

Proof that s^* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1

Bargaining game of alternating offers: SPE Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1 $y_1 < y_1^*$ P1 uses $s_1^* \Rightarrow$

Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1 $y_1 < y_1^*$ P1 uses $s_1^* \Rightarrow$

Bargaining game of alternating offers: SPE Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes *y*^{*} and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1 $y_1 < y_1^*$ P1 uses $s_1^* \Rightarrow$ she rejects offer and Bargaining game of alternating offers: SPE Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1 $y_1 < y_1^*$ P1 uses $s_1^* \Rightarrow$ she rejects offer and Bargaining game of alternating offers: SPE Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $\begin{array}{l} y_1 \geq y_1^* \quad \text{P1 uses } s_1^* \Rightarrow \text{she accepts offer} \Rightarrow \text{payoff } y_1 \\ \text{P1 deviates from } s_1^* \text{ in first period of subgame} \\ \Rightarrow \text{rejects offer} \Rightarrow \text{P1 proposes } x^* \Rightarrow \text{P2} \\ \text{accepts} \Rightarrow \text{payoff } \delta_1 x_1^* = y_1^* \text{ for P1} \\ y_1 < y_1^* \quad \text{P1 uses } s_1^* \Rightarrow \text{she rejects offer and proposes} \\ x^* \Rightarrow \end{array}$

Proof that *s*^{*} is subgame perfect equilibrium continued *s*₁^{*}: P1 always proposes *x*^{*} and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$

 s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

Subgame in which first move is response to offer

Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂

 $\begin{array}{l} y_1 \geq y_1^* \quad \text{P1 uses } s_1^* \Rightarrow \text{she accepts offer} \Rightarrow \text{payoff } y_1 \\ \text{P1 deviates from } s_1^* \text{ in first period of subgame} \\ \Rightarrow \text{rejects offer} \Rightarrow \text{P1 proposes } x^* \Rightarrow \text{P2} \\ \text{accepts} \Rightarrow \text{payoff } \delta_1 x_1^* = y_1^* \text{ for P1} \\ y_1 < y_1^* \quad \text{P1 uses } s_1^* \Rightarrow \text{she rejects offer and proposes} \\ x^* \Rightarrow \end{array}$

Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$

 s_2^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $y_1 \ge y_1^*$ P1 uses $s_1^* \Rightarrow$ she accepts offer \Rightarrow payoff y_1 P1 deviates from s_1^* in first period of subgame \Rightarrow rejects offer \Rightarrow P1 proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1 $y_1 < y_1^*$ P1 uses $s_1^* \Rightarrow$ she rejects offer and proposes $x^* \Rightarrow$ P2 accepts \Rightarrow payoff $\delta_1 x_1^* = y_1^*$ for P1

Proof that s^* is subgame perfect equilibrium continued s_1^* : P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$

 s_1^* : P2 always proposes y^* and accepts $x \Leftrightarrow x_1 \ge y_1 \ge y_1$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $\begin{array}{l} y_1 \geq y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she accepts offer} \Rightarrow \text{payoff} \ y_1 \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \text{rejects offer} \Rightarrow \mathsf{P1} \ \text{proposes} \ x^* \Rightarrow \mathsf{P2} \\ \text{accepts} \Rightarrow \text{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ y_1 < y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she rejects offer and proposes} \\ x^* \Rightarrow \mathsf{P2} \ \text{accepts} \Rightarrow \text{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \end{array}$

Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $\begin{array}{l} y_1 \geq y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she accepts offer} \Rightarrow \mathsf{payoff} \ y_1 \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \text{rejects offer} \Rightarrow \mathsf{P1} \ \text{proposes} \ x^* \Rightarrow \mathsf{P2} \\ \text{accepts} \Rightarrow \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ y_1 < y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she rejects offer and proposes} \\ x^* \Rightarrow \mathsf{P2} \ \text{accepts} \Rightarrow \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \ \text{accepts offer} \Rightarrow \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \ \text{accepts offer} \Rightarrow \mathsf{payoff} \ y_1 < y_1^* \end{array}$

Proof that *s*^{*} is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
- So P1's response to offer is optimal

Proof that s* is subgame perfect equilibrium continued

*s*₁^{*}: P1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^* = \delta_1 x_1^*$ *s*₂^{*}: P2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^* = \delta_2 y_2^*$

- Suppose P1 is responding to y, and fix P2's strategy at s^{*}₂
 - $\begin{array}{l} y_1 \geq y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she accepts offer} \Rightarrow \mathsf{payoff} \ y_1 \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \ \mathsf{rejects} \ \mathsf{offer} \Rightarrow \mathsf{P1} \ \mathsf{proposes} \ x^* \Rightarrow \mathsf{P2} \\ \text{accepts} \Rightarrow \ \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ y_1 < y_1^* \ \ \mathsf{P1} \ \text{uses} \ s_1^* \Rightarrow \text{she rejects offer and proposes} \\ x^* \Rightarrow \mathsf{P2} \ \text{accepts} \Rightarrow \ \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \ \text{accepts offer} \Rightarrow \ \mathsf{payoff} \ \delta_1 x_1^* = y_1^* \ \text{for} \ \mathsf{P1} \\ \mathsf{P1} \ \text{deviates from} \ s_1^* \ \text{in first period of subgame} \\ \Rightarrow \ \text{accepts offer} \Rightarrow \ \mathsf{payoff} \ y_1 < y_1^* \end{array}$
- So P1's response to offer is optimal
- Symmetric argument applies if responder is P2

Conclusion

Strategy pair s* defined by

▶ player 1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^*$

► player 2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^*$, where

$$x_1^* = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$
 and $y_1^* = \frac{\delta_1 (1 - \delta_2)}{1 - \delta_1 \delta_2}$

(so that $y_1^* = \delta_1 x_1^*$ and $x_2^* = \delta_2 y_2^*$) satisfies one-deviation property and thus is a subgame perfect equilibrium

Conclusion

Strategy pair s* defined by

▶ player 1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^*$

► player 2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^*$, where

$$x_1^* = \frac{1 - \delta_2}{1 - \delta_1 \delta_2}$$
 and $y_1^* = \frac{\delta_1 (1 - \delta_2)}{1 - \delta_1 \delta_2}$

(so that $y_1^* = \delta_1 x_1^*$ and $x_2^* = \delta_2 y_2^*$) satisfies one-deviation property and thus is a subgame perfect equilibrium

Defining property of SPE: each player indifferent between accepting and rejecting proposal made in equilibrium

Conclusion

Strategy pair s* defined by

▶ player 1 always proposes x^* and accepts $y \Leftrightarrow y_1 \ge y_1^*$

► player 2 always proposes y^* and accepts $x \Leftrightarrow x_2 \ge x_2^*$, where

$$x_1^* = rac{1 - \delta_2}{1 - \delta_1 \delta_2}$$
 and $y_1^* = rac{\delta_1 (1 - \delta_2)}{1 - \delta_1 \delta_2}$

(so that $y_1^* = \delta_1 x_1^*$ and $x_2^* = \delta_2 y_2^*$) satisfies one-deviation property and thus is a subgame perfect equilibrium

Defining property of SPE: each player indifferent between accepting and rejecting proposal made in equilibrium

Proof that s^* is *unique* subgame perfect equilibrium (\Rightarrow no nonstationary SPE) is a little intricate (see book)

Efficiency

 Player 2 accepts player 1's first offer, so agreement is reached immediately; no resources are wasted in delay

- Player 2 accepts player 1's first offer, so agreement is reached immediately; no resources are wasted in delay
- Intuition relates this feature to perfect information:

- Player 2 accepts player 1's first offer, so agreement is reached immediately; no resources are wasted in delay
- Intuition relates this feature to perfect information:
 - ► outcome not reached immediately ⇒ alternative outcome that both players prefer (same outcome immediately)

- Player 2 accepts player 1's first offer, so agreement is reached immediately; no resources are wasted in delay
- Intuition relates this feature to perfect information:
 - ► outcome not reached immediately ⇒ alternative outcome that both players prefer (same outcome immediately)
 - given perfect information, players should perceive and pursue this alternative outcome?

- Player 2 accepts player 1's first offer, so agreement is reached immediately; no resources are wasted in delay
- Intuition relates this feature to perfect information:
 - ► outcome not reached immediately ⇒ alternative outcome that both players prefer (same outcome immediately)
 - given perfect information, players should perceive and pursue this alternative outcome?
- Nevertheless, some variants of model with perfect information have SPEs in which agreement is *not* reached immediately (see, e.g., Exercise 125.2b)

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

► Given δ₂, equilibrium payoff x₁^{*} of P1 increases as δ₁ → 1: given patience of P2, P1's share increases as she becomes more patient

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

- ► Given δ₂, equilibrium payoff x₁^{*} of P1 increases as δ₁ → 1: given patience of P2, P1's share increases as she becomes more patient
- As P1 becomes extremely patient (δ₁ close to 1), her share approaches 1

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

- ► Given δ₂, equilibrium payoff x₁^{*} of P1 increases as δ₁ → 1: given patience of P2, P1's share increases as she becomes more patient
- As P1 becomes extremely patient (δ₁ close to 1), her share approaches 1
- Symmetrically, fixing patience of P1, P2's share increases to 1 as she becomes more patient

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

First-mover advantage

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

First-mover advantage

► $\delta_1 = \delta_2 = \delta$ ⇒ only asymmetry in game is that P1 moves first

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

First-mover advantage

- ► $\delta_1 = \delta_2 = \delta$ ⇒ only asymmetry in game is that P1 moves first
- \Rightarrow P1's equilibrium payoff is

$$\frac{1-\delta}{1-\delta^2} = \frac{1}{1+\delta} > \frac{1}{2}$$

Payoff $\rightarrow \frac{1}{2}$ as $\delta \rightarrow 1$

$$(\mathbf{x}_1^*, \mathbf{x}_2^*) = \left(\frac{1-\delta_2}{1-\delta_1\delta_2}, \frac{\delta_2(1-\delta_1)}{1-\delta_1\delta_2}\right)$$

First-mover advantage

- ► $\delta_1 = \delta_2 = \delta$ ⇒ only asymmetry in game is that P1 moves first
- \Rightarrow P1's equilibrium payoff is

$$\frac{1-\delta}{1-\delta^2} = \frac{1}{1+\delta} > \frac{1}{2}$$

Payoff $\rightarrow \frac{1}{2}$ as $\delta \rightarrow 1$

 Thus players equally and only slightly impatient advantage small and outcome almost symmetric

Many players

 Model can be extended to many players (e.g. all players have to agree to proposal)

Many players

- Model can be extended to many players (e.g. all players have to agree to proposal)
- With more than two players, game has many SPEs: in fact, for every possible agreement there is an SPE in which that agreement is realized immediately

Many players

- Model can be extended to many players (e.g. all players have to agree to proposal)
- With more than two players, game has many SPEs: in fact, for every possible agreement there is an SPE in which that agreement is realized immediately
- Game has only one stationary equilibrium (any given player always makes same offer and uses same rule to respond to offers), though it is not clear that this equilibrium is right one to select

 Motivation for players to reach agreement in bargaining game of alternating offers is their impatience

- Motivation for players to reach agreement in bargaining game of alternating offers is their impatience
- Will now study variant of model in which motivation is possibility that exogenous event will cause bargaining to break down

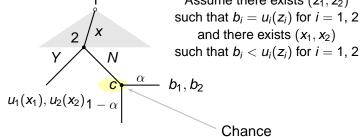
- Motivation for players to reach agreement in bargaining game of alternating offers is their impatience
- Will now study variant of model in which motivation is possibility that exogenous event will cause bargaining to break down
- Possibility of breakdown is enough to induce agreement, so assume that discount factors are both 1

Outside options vs. breakdown

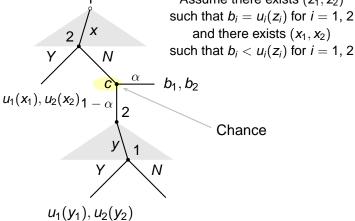
Bargaining game of alternating offers with risk of breakdown

Y Ν $u_1(x_1), u_2(x_2)$

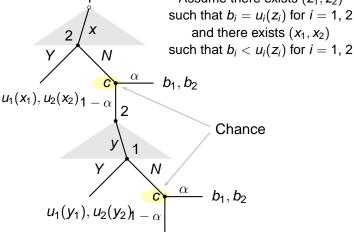
Bargaining game of alternating offers with risk of
breakdownAssume there exists (z_1, z_2)



Bargaining game of alternating offers with risk of
breakdownAssume there exists (z_1, z_2)



Bargaining game of alternating offers with risk of
breakdownAssume there exists (z_1, z_2)



By logic similar to that for bargaining game of alternating offers, game has unique SPE

By logic similar to that for bargaining game of alternating offers, game has unique SPE

In this equilibrium,

▶ player 1 always proposes $\hat{x}(\alpha)$ and accepts $y \Leftrightarrow y_1 \ge \hat{y}_1(\alpha)$

▶ player 2 always proposes $\hat{y}(\alpha)$ and accepts $x \Leftrightarrow x_2 \ge \hat{x}_2(\alpha)$ and each player is indifferent between accepting and rejecting other player's equilibrium proposal, so that

$$u_1(\hat{y}_1(\alpha)) = (1 - \alpha)u_1(\hat{x}_1(\alpha)) + \alpha b_1$$

$$u_2(\hat{x}_2(\alpha)) = (1 - \alpha)u_2(\hat{y}_2(\alpha)) + \alpha b_2$$

Bargaining game of alternating offers with risk of breakdown: Risk neutral players

$$u_1(\hat{y}_1(\alpha)) = (1 - \alpha)u_1(\hat{x}_1(\alpha)) + \alpha b_1$$

$$u_2(\hat{x}_2(\alpha)) = (1 - \alpha)u_2(\hat{y}_2(\alpha)) + \alpha b_2$$

If $u_i(x_i) = x_i$ for each player *i* then

$$\hat{y}_1(\alpha) = (1 - \alpha)\hat{x}_1(\alpha) + \alpha b_1$$
$$\hat{x}_2(\alpha) = (1 - \alpha)\hat{y}_2(\alpha) + \alpha b_2$$

Bargaining game of alternating offers with risk of breakdown: Risk neutral players

$$u_1(\hat{y}_1(\alpha)) = (1 - \alpha)u_1(\hat{x}_1(\alpha)) + \alpha b_1$$

$$u_2(\hat{x}_2(\alpha)) = (1 - \alpha)u_2(\hat{y}_2(\alpha)) + \alpha b_2$$

If $u_i(x_i) = x_i$ for each player *i* then

$$\hat{y}_1(\alpha) = (1 - \alpha)\hat{x}_1(\alpha) + \alpha b_1$$
$$\hat{x}_2(\alpha) = (1 - \alpha)\hat{y}_2(\alpha) + \alpha b_2$$

so that

$$\hat{x}_1(\alpha) = \frac{1 - b_2 + (1 - \alpha)b_1}{2 - \alpha}, \quad \hat{y}_1(\alpha) = \frac{(1 - \alpha)(1 - b_2) + b_1}{2 - \alpha}$$

Bargaining game of alternating offers with risk of breakdown: Risk neutral players

$$\hat{x}_{1}(\alpha) = \frac{1 - b_{2} + (1 - \alpha)b_{1}}{2 - \alpha}, \qquad \hat{y}_{1}(\alpha) = \frac{(1 - \alpha)(1 - b_{2}) + b_{1}}{2 - \alpha}$$

Bargaining game of alternating offers with risk of breakdown: Risk neutral players

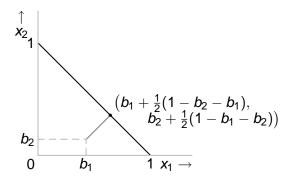
$$\hat{x}_{1}(\alpha) = \frac{1 - b_{2} + (1 - \alpha)b_{1}}{2 - \alpha}, \qquad \hat{y}_{1}(\alpha) = \frac{(1 - \alpha)(1 - b_{2}) + b_{1}}{2 - \alpha} \\ (\hat{x}_{1}(\alpha), \hat{x}_{2}(\alpha)) \xrightarrow[\alpha \to 0]{} (b_{1} + \frac{1}{2}(1 - (b_{1} + b_{2})), b_{2} + \frac{1}{2}(1 - (b_{1} + b_{2})))$$

Bargaining game of alternating offers with risk of breakdown: Risk neutral players

$$\hat{x}_1(\alpha) = \frac{1 - b_2 + (1 - \alpha)b_1}{2 - \alpha}, \qquad \hat{y}_1(\alpha) = \frac{(1 - \alpha)(1 - b_2) + b_1}{2 - \alpha}$$

 $(\hat{x}_1(\alpha), \hat{x}_2(\alpha)) \xrightarrow[\alpha \to 0]{} (b_1 + \frac{1}{2}(1 - (b_1 + b_2)), b_2 + \frac{1}{2}(1 - (b_1 + b_2)))$

 \Rightarrow "split the difference" (1 – $b_1 - b_2$ is surplus over breakdown outcome)



Summary

 Bargaining game of alternating offers with discounting has unique SPE

- Bargaining game of alternating offers with discounting has unique SPE
- Agreement is reached immediately (efficient outcome)

- Bargaining game of alternating offers with discounting has unique SPE
- Agreement is reached immediately (efficient outcome)
- ► Player is more patient ⇒ higher payoff

- Bargaining game of alternating offers with discounting has unique SPE
- Agreement is reached immediately (efficient outcome)
- ► Player is more patient ⇒ higher payoff
- Players equally patient, with δ close to 0 ⇒ outcome close to (¹/₂, ¹/₂)

- Bargaining game of alternating offers with discounting has unique SPE
- Agreement is reached immediately (efficient outcome)
- ► Player is more patient ⇒ higher payoff
- Players equally patient, with δ close to 0 ⇒ outcome close to (¹/₂, ¹/₂)
- With risk of breakdown (and no discounting), unique SPE with outcome close to "split the difference" solution over breakdown outcome when probability of breakdown close to 0

In model with risk of breakdown, bargaining breaks down independently of players' actions

- In model with risk of breakdown, bargaining breaks down independently of players' actions
- What if players can choose to terminate bargaining?

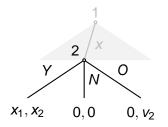
- In model with risk of breakdown, bargaining breaks down independently of players' actions
- What if players can choose to terminate bargaining?
- One-period example ($v_2 > 0$):



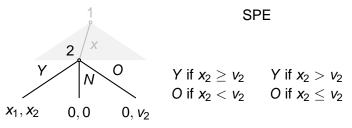
In model with risk of breakdown, bargaining breaks down independently of players' actions

SPE

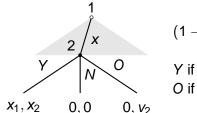
- What if players can choose to terminate bargaining?
- One-period example ($v_2 > 0$):

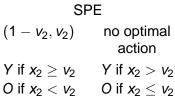


- In model with risk of breakdown, bargaining breaks down independently of players' actions
- What if players can choose to terminate bargaining?
- One-period example ($v_2 > 0$):

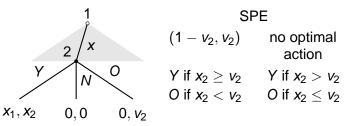


- In model with risk of breakdown, bargaining breaks down independently of players' actions
- What if players can choose to terminate bargaining?
- One-period example ($v_2 > 0$):



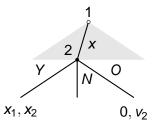


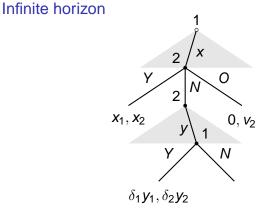
- In model with risk of breakdown, bargaining breaks down independently of players' actions
- What if players can choose to terminate bargaining?
- One-period example ($v_2 > 0$):



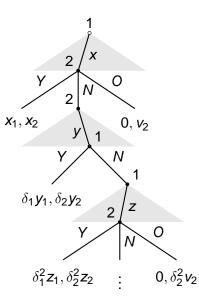
Without outside option, P2 gets 0 ⇒ outside option raises her SPE payoff to v₂

Infinite horizon





Infinite horizon



Let

 s* = unique SPE of bargaining game of alternating offers with no outside options

Let

- s* = unique SPE of bargaining game of alternating offers with no outside options
- x^* , y^* = proposals of players 1 and 2 in this equilibrium

Let

- s* = unique SPE of bargaining game of alternating offers with no outside options
- x^* , y^* = proposals of players 1 and 2 in this equilibrium

Proposition

If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for player 2.

Let

• $s^* =$ unique SPE of bargaining game of alternating offers

P2's payoff if she opts out is less than her payoff in SPE of game in which she has no outside option

1 and 2 in this equilibrium

If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for player 2.

Let

- s* = unique SPE of bargaining game of alternating offers with no outside options
- x^* , y^* = proposals of players 1 and 2 in this equilibrium

Proposition

If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for player 2.

If $v_2 > x_2^*$ then the infinite horizon game with an outside option for player 2 has a unique SPE, in which

- ► player 1 always proposes $(1 v_2, v_2)$ and accepts $y \Leftrightarrow y_1 \ge \delta_1(1 v_2)$
- ▶ player 2 always proposes (δ₁(1 − v₂), 1 − δ₁(1 − v₂)) and accepts x if x₂ ≥ v₂ and opts out otherwise.

Let

- s* = unique SPE of bargaining game of alternating offers with no outside options
- x^* , y^* = proposals of players 1 and 2 in this equilibrium

Proposition

If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for play p_2^* , SPE payoff is driven up If $v_2 > x_2^*$ then the infinite horizon payoff to her outside option payoff for player 2 has a unique of x_1, \dots, x_n^* .

- ▶ player 1 always proposes $(1 v_2, v_2)$ and accepts $y \Leftrightarrow y_1 \ge \delta_1(1 v_2)$
- ▶ player 2 always proposes (δ₁(1 − v₂), 1 − δ₁(1 − v₂)) and accepts x if x₂ ≥ v₂ and opts out otherwise.

Proposition

If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for player 2.

If $v_2 > x_2^*$ then the infinite horizon game with an outside option for player 2 has a unique SPE, in which

- ► player 1 always proposes $(1 v_2, v_2)$ and accepts $y \Leftrightarrow y_1 \ge \delta_1(1 v_2)$
- ▶ player 2 always proposes (δ₁(1 − v₂), 1 − δ₁(1 − v₂)) and accepts x if x₂ ≥ v₂ and opts out otherwise.
- Result says that player's outside option affects SPE only if it is worth more than her equilibrium payoff in its absence

Proposition

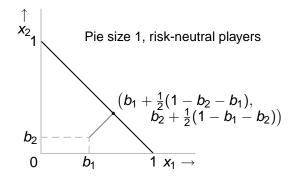
If $v_2 < x_2^*$ then s^* is unique SPE of infinite horizon game with outside option for player 2.

If $v_2 > x_2^*$ then the infinite horizon game with an outside option for player 2 has a unique SPE, in which

- ▶ player 1 always proposes $(1 v_2, v_2)$ and accepts $y \Leftrightarrow y_1 \ge \delta_1(1 v_2)$
- ▶ player 2 always proposes (δ₁(1 − v₂), 1 − δ₁(1 − v₂)) and accepts x if x₂ ≥ v₂ and opts out otherwise.
- Result says that player's outside option affects SPE only if it is worth more than her equilibrium payoff in its absence
- Uniqueness is sensitive to timing of outside options
 - If player can opt out after opponent rejects offer, get multiple SPEs, with different properties

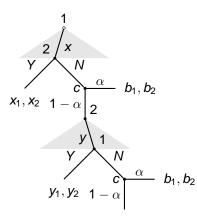
In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff

In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff</p>



Finite horizon

- In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff</p>
 - Increase in breakdown payoff increases player's expected payoff in subgame following rejection of offer



- In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff</p>
 - Increase in breakdown payoff increases player's expected payoff in subgame following rejection of offer

- In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff</p>
 - Increase in breakdown payoff increases player's expected payoff in subgame following rejection of offer
- If breaking off negotiations is an option, it affects player's equilibrium payoff only if payoff it yields exceeds her equilibrium payoff in its absence

- In model with exogenous risk of breakdown, increase in player's breakdown payoff always increases her equilibrium payoff, even if breakdown payoff < equilibrium payoff</p>
 - Increase in breakdown payoff increases player's expected payoff in subgame following rejection of offer
- If breaking off negotiations is an option, it affects player's equilibrium payoff only if payoff it yields exceeds her equilibrium payoff in its absence
 - Player rationally takes option only when it benefits her, so option worse than equilibrium payoff in its absence is irrelevant