Economics 2030

Fall 2018

Martin J. Osborne

Solutions for Tutorial 3

- 1. (a) The argument is exactly the same as it is for an auction with no reserve price.
 - (b) If $v_i < r$, then the expected price paid by *i* is 0 (the bidder never obtains the object).

Now suppose that $v_i \ge r$. With probability r, the other player's valuation is less than r, in which case the player pays r, and with probability $1 - v_i$ the other player's valuation is greater than v_i , in which case the player does not win. In the remaining case, the other player's valuation is between r and v_i . This case occurs with probability $v_i - r$, and the other player's valuation is uniformly distributed between r and v_i . Thus the expected price paid by the player in this case is $\frac{1}{2}(r + v_i)$. Putting all these cases together, the expected price is

$$\Pr(v_j < r)r + \Pr(r < v_j < v_i)\frac{1}{2}(r + v_i) = r^2 + \frac{1}{2}(v_i - r)(v_i + r)$$

= $\frac{1}{2}(v_i^2 + r^2).$

(c) The expected revenue of the auctioneer is twice the expected value of $\pi(v_i)$. (Twice because there are two bidders.) The valuation v_i is uniformly distributed on [0, 1], and $\pi(v_i) = 0$ if $v_i < r$, so the expected value of $\pi(v_i)$ is

$$\int_r^1 \pi(v_i)\,dv_i.$$

We have

$$\int_{r}^{1} \pi(v_{i}) dv_{i} = \frac{1}{2} \int_{r}^{1} (v_{i}^{2} + r^{2}) dv_{i}$$
$$= \frac{1}{2} [\frac{1}{3} v_{i}^{3} + r^{2} v_{i}]_{r}^{1}$$
$$= \frac{1}{2} (\frac{1}{3} + r^{2} - \frac{4}{3} r^{3}).$$

The maximizer of this function is the interior value of *r* for which its derivative is zero, which is $r = \frac{1}{2}$. (Sketch the function.) Thus the optimal reserve price is $\frac{1}{2}$.

2. (a) The game is defined as follows.

Players The *n* bidders.

- **States** The set of all profiles (v_1, \ldots, v_n) of valuations, where $v_i \in [0, 1]$ for all *i*.
- Actions Each player's set of actions is the set of possible bids (nonnegative numbers).
- **Signals** The set of signals that each player may observe is the set of possible valuations. The signal function τ_i of each player *i* is given by $\tau_i(v_1, \ldots, v_n) = v_i$ (each player knows her own valuation).
- **Prior beliefs** Each player assigns probability $\prod_{j=1}^{n} F(v_j)$ to the set of states in which the valuation of each player *j* is at most v_j , where *F* is the cumulative distribution function of the uniform distribution.
- **Preferences** Player *i*'s preferences are represented by the expected value of her Bernoulli payoff, which assigns to any pair $((b_1, ..., b_n), (v_1, ..., v_n))$ the payoff $v_i b_i$ if b_i wins and $-b_i$ if it loses.
- (b) Look for a symmetric equilibrium, in which each player bids β(v) when her valuation is v, where β is increasing. In such an equilibrium, the expected payoff of a player with valuation v who bids b is

$$v(\beta^{-1}(b))^{n-1} - b.$$

An interior maximizer satisfies

$$(n-1)v(\beta^{-1}(b))^{n-2}/\beta'(\beta^{-1}(b)) - 1 = 0.$$

In an equilibrium, the bid $\beta(v)$ maximizes the payoff, so that if it is between 0 and 1 we have

$$(n-1)v^{n-1}/\beta'(v) = 1,$$

or

$$\beta'(v) = (n-1)v^{n-1}.$$

We conclude that

$$\beta(v) = (n-1)v^n / n + C.$$

where *C* is a constant. In an equilibrium, the bid of a player with valuation v is at most v (otherwise the player can increase her payoff by bidding 0), so C = 0.

We conclude that if the game has a symmetric equilibrium in which β is increasing, then $\beta(v) = (n - 1)v^n/n$ for all v.

3. (a) Here is the game:

Players $N = \{1, 2\}.$ **States** The set of pairs (c_1, c_2) where $0 \le c_i \le 1$ for i = 1, 2. **Actions** $A_1 = A_2 = \{W, N\}.$ **Signals** $T_1 = T_2 = [0, 1].$ $\tau_i(c_1, c_2) = c_i$ for i = 1, 2. **Beliefs** Each player's prior is uniform on $[0, 1]^2$.

- **Payoffs** The payoff of player *i* is $\lambda(2 \lambda) c_i$ if both players work, λc_i is she works and the other player does not, λ if she does not work and the other player does, and 0 if neither player works.
- (b) A reasonable guess is that the game has a Nash equilibrium in which each player *i* works if and only if c_i ≤ c̄_i, for some c̄_i, *i* = 1,
 2. For such a pair of strategies to be an equilibrium, player *i* of type c̄_i must obtain the same expected payoff from working as from not working. The payoff of player 1 of type c̄₁ from working is

$$(\lambda(2-\lambda)-\overline{c}_1) \operatorname{Pr}(c_2 \leq \overline{c}_2) + (\lambda-\overline{c}_1) \operatorname{Pr}(c_2 > \overline{c}_2)$$

or

$$(\lambda(2-\lambda)-\overline{c}_1)\overline{c}_2+(\lambda-\overline{c}_1)(1-\overline{c}_2)$$

and her payoff from not working is

 $\lambda \Pr(c_2 \leq \overline{c}_2) = \lambda \overline{c}_2.$

For these payoffs to be equal, we need

$$\overline{c}_1 = \lambda (1 - \lambda \overline{c}_2).$$

A similar argument for player 2 leads to the requirement

$$\overline{c}_2 = \lambda (1 - \lambda \overline{c}_1).$$

These two conditions together imply that $\bar{c}_1 = \bar{c}_2 = \lambda/(1 + \lambda^2)$. To check that the strategy pair is an equilibrium we need to show, for i = 1, 2, that types of player *i* less than $\lambda/(1 + \lambda^2)$ prefer not to work and types greater than $\lambda/(1 + \lambda^2)$ prefer to work, given that types of player *j* less than \bar{c}_i work and types greater than \bar{c}_i do not work, for $j \neq i$. The payoff to type c_i of player i in this case is $\lambda \overline{c}_j$ if she does not work and $(\lambda(2-\lambda)-c_i)\overline{c}_j + (\lambda-c_i)(1-\overline{c}_2)$ if she works. The former is independent of c_i whereas the latter is decreasing in c_i , so indeed types less than \overline{c}_i prefer not to work and ones greater than \overline{c}_i prefer to work. Thus the strategy pair is a Nash equilibrium.

4. No.

Figure 1. An extensive game with a strategy profile that satisfies the "one deviation property along the equilibrium path" but is not a Nash equilibrium.

In the game in Figure 1 the strategy pair (BE, C) is not a Nash equilibrium but satisfies the property.