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Solutions to Problem Set 3

1. For player 2 the action R is strictly dominated by the mixed strategy
that assigns probability 1

4 to L and probability 3
4 to M. (It is strictly

dominated by other strategies too.) Thus in every Nash equilibrium
player 2 assigns probability 0 to R, and hence we can eliminate R from
consideration.

We can find the Nash equilibria of the resulting game (in which
player 1’s actions are T, M, and B and player 2’s actions are L and
M) by considering each possible pair of supports for the strategies in
turn.

One action for each player By inspection, the only cases that yield
Nash equilibria are (T, L) and (M, M).

Two actions for player 1, one for player 2 In no case is player 1 in-
different between two actions, given the action of player 2, so in
no case is there an equilibrium.

One action for player 1, two for player 2 In no case is player 2 indif-
ferent between two actions, given the action of player 1, so in no
case is there an equilibrium.

(T, M) for player 1, (L, M) for player 2 Denote by p the probability
player 1 assigns to T and by q the probability player 2 assigns to
L. For player 1 to be indifferent between T and M we need q = 1

2 .
For player 2 to be indifferent between L and R we need p = 4

5 .
Given q = 1

2 , player 1’s expected payoff to B is the same as her
expected payoff to T and M, so this pair of strategies is a Nash
equilibrium.

(T, B) for player 1, (L, M) for player 2 Given the player 1 assigns
positive probability only to T and B, player 2’s payoff to L ex-
ceeds her payoff to R. Thus there is no equilibrium with these
supports.
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(M, B) for player 1, (L, M) for player 2 Denote by p the probability
player 1 assigns to M and by q the probability player 2 assigns to
L. For player 1 to be indifferent between M and B we need q = 1

2 .
For player 2 to be indifferent between L and R we need p = 1

5 .
Given q = 1

2 , player 1’s expected payoff to B is the same as her
expected payoff to T and M, so this pair of strategies is a Nash
equilibrium.

(T, M, B) for player 1, (L, M) for player 2 Denote by p the probabil-
ity player 1 assigns to T and r the probability she assigns to M;
denote by q the probability player 2 assigns to L. For player 1 to
be indifferent between T, M, and B we need q = 1

2 . For player 2
to be indifferent between L and R we need p + 2(1 − p − r) =
4r + 1− p− r or r = 1

5 .

The equilibria in the fourth and sixth cases are special cases of the
equilibria in the last case, so we conclude that the Nash equilibria of
the game are

• ((1, 0, 0), (1, 0, 0))

• ((0, 1, 0), (0, 1, 0))

• any pair ((p1, 1
5 , p3), ( 1

2 , 1
2 , 0)) with p1 + p3 = 4

5 and p1 ≥ 0, p3 ≥
0.

2. (a) The game has no pure strategy Nash equilibrium and no mixed
strategy Nash equilibrium in which one of the player’s strategies
is pure. Consider a mixed strategy Nash equilibrium in which
neither player’s strategy is pure. Denote the probability player 1
assigns to A by p and the probability player 2 assigns to A by q.
For an equilibrium we need player 1’s expected payoffs to A and
B to be the same, or

(1− q)vA = qvB + (1− q)πvB,

which means that

q = 1− vB/[vA + (1− π)vB] = (vA − πvB)/(vA + (1− π)vB)

(which is nonnegative and at most 1). Denote this probability by
q∗. We need also player 2’s expected payoffs to A and B to be the
same, or

−(1− p)vB = −pvA − (1− p)πvB,
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which means that

p = 1− vA/[vA + (1− π)vB] = (1− π)vB/(vA + (1− π)vB)

(which is nonnegative and at most 1). Denote this probability
by p∗. Thus the game has a unique Nash equilibrium ((p∗, 1−
p∗), (q∗, 1− q∗)).

(b) Player 1’s expected payoff in the equilibrium of the game in part a
is (1− q)vA, where q is the equilibrium probability that player 2
chooses A, and is thus equal to vAvB/[vA + (1− π)vB].
Thus if h ≤ vAvB/[vA + (1 − π)vB], a Nash equilibrium of
the game is the mixed strategy equilibrium ((p∗, 1 − p∗, 0),
(q∗, 1− q∗)).
If h > vAvB/[vA + (1 − π)vB], then for player 2’s strategy
(q, 1 − q), player 1’s expected payoff to A is (1 − q)vA, her ex-
pected payoff to B is qvB + (1− q)πvB, and her expected payoff
to C is h. Thus the strategy pair ((0, 0, 1), (q, 1− q)) is a Nash
equilibrium if (1 − q)vA ≤ h and qvB + (1 − q)πvB ≤ h, or
1 − h/vA ≤ q ≤ (h − πvB)/[(1 − π)vB] (one of these equilib-
ria is ((0, 0, 1), (q∗, 1 − q∗))). (If h ≥ vA then ((0, 0, 1), (0, 1)) is
also a Nash equilibrium.)

3. (a) True. Suppose that the mixed strategy α′i assigns positive probabil-
ity to the action a′i, which is strictly dominated by the action ai. Then
ui(ai, a−i) > ui(a′i, a−i) for all a−i. Let αi be the mixed strategy that
differs from α′i only in the weight that α′i assigns to a′i is transferred to
ai. That is, αi is defined by αi(a′i) = 0, αi(ai) = α′i(a′i) + α′i(ai), and
αi(bi) = α′i(bi) for every other action bi. Then αi strictly dominates
α′i: for any a−i we have U(αi, a−i) − U(α′i, a−i) = α′i(a′i)(u(ai, a−i) −
ui(a′i, a−i)) > 0.

(b) False. Consider the game in Figure 1. Then player 1’s mixed strat-
egy that assigns probability 1

2 to M and probability 1
2 to B is strictly

dominated by T, even though neither M nor B is strictly dominated.

L R
T 2 2

M 3 0
B 0 3

Figure 1. Player 1’s payoffs in a strategic game with vNM preferences.
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4. I look for a value of p such that the condition in Lemma 33.2 is satis-
fied.

First consider a supporter of candidate A. If she votes then candi-
date A ties if all k − 1 of her comrades vote, an event with probabil-
ity pk−1, and otherwise candidate A loses. Thus her expected payoff
is

pk−1 − c.

If she abstains, then candidate A surely loses, so her payoff is 0. Thus
in an equilibrium in which 0 < p < 1 the condition in Lemma 33.2
implies that pk−1 = c, or

p = c1/(k−1).

Now consider a supporter of candidate B who votes. With proba-
bility pk all of the supporters of candidate A vote, in which case the
election is a tie; with probability 1 − pk at least one of the supporters
of candidate A does not vote, in which case candidate B wins. Thus
the expected payoff of a supporter of candidate B who votes is

pk + 2(1− pk)− c.

If the supporter of candidate B switches to abstaining, then

• candidate B loses if all supporters of candidate A vote, an event
with probability pk

• candidate B ties if exactly k − 1 supporters of candidate A vote,
an event with probability kpk−1(1− p)

• candidate B wins if fewer than k − 1 supporters of candidate A
vote, an event with probability 1− pk − kpk−1(1− p).

Thus a supporter of candidate B who switches from voting to abstain-
ing obtains an expected payoff of

kpk−1(1− p) + 2(1− pk − kpk−1(1− p)) = 2− (2− k)pk − kpk−1.

Hence in order for it to be optimal for such a citizen to vote (i.e. in
order for the condition in Lemma 33.2 to be satisfied), we need

pk + 2(1− pk)− c ≥ 2− (2− k)pk − kpk−1,
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or
kpk−1(1− p) + pk ≥ c.

Finally, consider a supporter of candidate B who abstains. With prob-
ability pk all the supporters of candidate A vote, in which case the
candidates tie; with probability 1− pk at least one of the supporters of
candidate A does not vote, in which case candidate B wins. Thus the
expected payoff of a supporter of candidate B who abstains is

pk + 2(1− pk).

If this citizen instead votes, candidate B surely wins (she gets k + 1
votes, while candidate A gets at most k). Thus the citizen’s expected
payoff is

2− c.

Hence in order for the citizen to wish to abstain, we need

pk + 2(1− pk) ≥ 2− c

or
c ≥ pk.

In summary, for equilibrium we need p = c1/(k−1) and

pk ≤ c ≤ kpk−1(1− p) + pk.

Given p = c1/(k−1), c = pk−1, so that the two inequalities are satisfied.
Thus p = c1/(k−1) defines an equilibrium.

As c increases, the probability p, and hence the expected number of
voters, increases.

5. (a) Every output greater than qm is strictly dominated by qm.

(b) After all outputs greater than qm are deleted, every output less
than qm/2 is strictly dominated by qm/2.

The process can be continued; the only pair of outputs that survives
all rounds is the Nash equilibrium.
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