ECO2030: Microeconomic Theory II, module 1

Lecture 5

Martin J. Osborne

Department of Economics University of Toronto

2018.11.13

Table of contents

Auctions
Independent private values
Second price
First price
Common values

Juries

Auctions

- Auction: mechanism in which traders submit bids and winner and price depend on bids
- Goods sold by auction:
 - Art (e.g. Sotheby's, founded 1744; Christie's, founded 1766)
 - Fish, cattle, flowers
 - Treasury bills
 - Ads on search engines (Google ad revenue second quarter 2016 about \$19 billion)
 - Oil tracts, timber
 - Wireless spectrum (for cell phones, TV, ...): revenue from 2008 auction in Canada \$4.25 billion
 - Government contracts
 - Everything: eBay's 2015 sales revenue \$22 billion
 - Repairs to your house

Auctions

Many versions:

- Bids submitted sequentially (Christie's, Sotheby's, eBay) or simultaneously (sealed-bid)
- Sale price = highest bid or some other price
- Single object for sale (e.g. work of art), or many interrelated objects (e.g. licences to use radio spectrum for wireless communication in connected areas)
- Each player's value of object may be independent of other players' valuations, or dependent on them

Single object independent private values sealed-bid auction

- Single object for sale
- n bidders
- Each bidder's valuation of object known to her, fixed independently of other bidders' valuations
- ► Each bidder doesn't know other bidders' valuations; believes each is drawn independently from same distribution F on [v, v]
- Bids submitted simultaneously
- ▶ Bidder who submits highest bid wins

Auctions

Second-price auction

 Price paid by winner is highest losing bid (absent ties, second highest bid)

Juries

- One reason why rule is interesting: models open oral ascending ("English") auction:
 - given independent private values, bidders don't learn from others' bids
 - so can model players' strategies as limit bids (price at which to drop out)
 - ▶ price stops increasing when n 1 bidders have dropped out ⇒ price paid by winner is slightly above second highest limit bid

Auctions

Juries

Second-price auction

Ascending auction

- Suppose 4 bidders with limit bids m₁, m₂, m₃, and m₄
- Price starts low: everyone wants to bid
- As price rises, bidders drop out
- Once price goes above m₁, bidding stops ⇒ bidder 4 wins and pays price slightly above m₁—second highest limit bid

Second-price auction

Bayesian game

```
Players N = \{1, ..., n\} (bidders)
 States \Omega = \{(v_1, \dots, v_n) : v < v_i < \overline{v} \text{ for all } i\}
Actions A_i = \mathbb{R}_+ for each i \in N (bid = any nonnegative
          number)
Signals T_i = [v, \overline{v}] and \tau_i(v_1, \dots, v_n) = v_i for all (v_1, \dots, v_n)
          and all i \in N (each player knows own valuation)
Beliefs Every player believes that the other players'
          valuations are independent draws from F: each
          player i assigns probability \prod_{i=1}^{n} F(v_i) to the set of
          states in which the valuation of every player j is at
          most v_i
```

Second-price auction

Bayesian game continued

Payoff functions

$$u_i((b_1,\ldots,b_n),(v_1,\ldots,v_n)) = \begin{cases} v_i - \max_{j \neq i} b_j & \text{if } b_j < b_i \text{ for all } j \neq i \\ (v_i - b_i)/m & \text{if } b_j \leq b_i \text{ for all } j \in N \text{ and} \\ & |\{j \in N : b_j = b_i\}| = m \geq 2 \\ 0 & \text{if } b_j > b_i \text{ for some } j \neq i \end{cases}$$

Single object independent private value sealed-bid auction: Second-price rule

Bayesian game continued

Payoff functions

$$u_i((b_1,\ldots,b_n),(v_1,\ldots,v_n)) = \begin{cases} \frac{v_i - \max_{j \neq i} b_j}{|\{j \in N : b_j = b_i\}|} & \text{if } b_j \leq b_i \text{ for all } j \in N \\ 0 & \text{if } b_j > b_i \text{ for some } j \neq i. \end{cases}$$

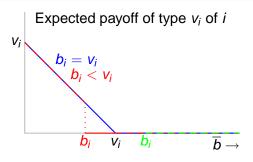
Notes

- bidders risk-neutral
- auction symmetric (all valuations drawn from same distribution)

Second-price auction

Proposition

For type v_i of player i, the bid v_i weakly dominates all other bids.

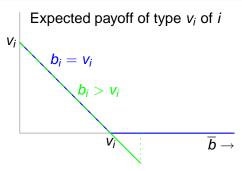


 \Rightarrow bid v_i weakly dominates bid $b_i < v_i$

Second-price auction

Proposition

For type v_i of player i, the bid v_i weakly dominates all other bids.



 \Rightarrow bid v_i weakly dominates bid $b_i > v_i$

Second-price auction

Because a player's bidding her valuation weakly dominates all her other actions . . .

Proposition

An independent private values second-price sealed-bid auction has a Nash equilibrium in which every type of every player bids her valuation.

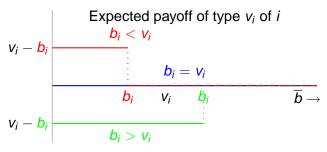
The game has also *other* equilibria, but we select this one as "distinguished"

Auctions

First-price auction

A player's bid equal to her valuation does *not* weakly dominate all other bids in a first-price auction:

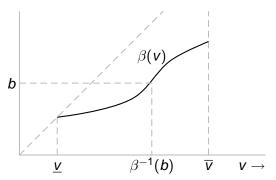
- v_i weakly dominates higher bids
- but not lower bids
- ▶ In fact, any bid $b_i < v_i$ weakly dominates $b_i = v_i$



First-price auction

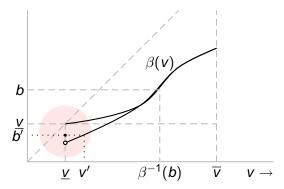
Nash equilibrium

- ▶ Denote bid of type v_i of player i by $\beta_i(v_i)$
- Guess Nash equilibrium in which
 - ▶ $\beta_i(v_i) \leq v_i$ for all v_i
 - ▶ $\beta_i = \beta$ for all $i \in N$ (symmetric equilibrium)
 - → β is increasing (higher valuation ⇒ higher bid) and continuous



Argument that $\beta(\underline{v}) = \underline{v}$:

- ▶ $\beta(\underline{v}) < \underline{v} \Rightarrow \beta(v) < \underline{v}$ for v close to \underline{v} (given β continuous)
- ▶ Player with valuation \underline{v} wins with probability 0
- ▶ If player with valuation \underline{v} increases bid to b' she wins when highest other valuation $< v' \Rightarrow$ with positive probability



- Consider player i
- Suppose that all other players bid according to β
- For equilibrium, $\beta(v)$ must be optimal for every type v of player i, given other players' bids
- ▶ That is, for all v

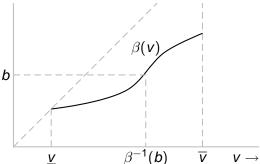
bid of $\beta(v)$ maximizes expected payoff of type v

 \Rightarrow

$$\beta(v)$$
 solves $\max_{b}(v-b) \Pr(\text{all other bids} < b)$

First-price auction

 $\beta(v)$ solves $\max_{b}(v-b)\Pr(\text{all other bids} < b)$ for all vNow,



$$\beta(v)$$
 solves $\max_{b} (v - b) \frac{\Pr(\text{all other bids} < b)}{p}$ for all v

Now,

$$\Pr(\text{all other bids} < b) = \Pr(\text{all other valuations} < \beta^{-1}(b))$$

$$= \Pr(\text{highest of other valuations} < \beta^{-1}(b))$$

Let

$$\mathbf{X} = \text{highest of } n-1 \text{ randomly selected valuations}$$
 $H = \text{cumulative distribution function of } \mathbf{X}$
 $\Rightarrow \text{Pr (highest of other valuations} < \beta^{-1}(b)) = H(\beta^{-1}(b))$

So equilibrium condition is

$$\beta(v)$$
 solves $\max_{b} (v - b) \frac{H(\beta^{-1}(b))}{h}$ for all v

$$\beta(v)$$
 solves $\max_{b} (v - b) H(\beta^{-1}(b))$ for all v

If H is differentiable then

$$b^*$$
 solves $\max_b(v-b)H(\beta^{-1}(b))$

 \Rightarrow at least for $b^* > 0$

$$-H(\beta^{-1}(b^*))+(v-b^*)H'(\beta^{-1}(b^*))(\beta^{-1})'(b^*)=0$$

Thus

$$\beta(v)$$
 solves $\max_{b}(v-b)H(\beta^{-1}(b))$ for all v

$$\Rightarrow$$

$$-H(\beta^{-1}(\beta(v))) + (v - \beta(v))H'(\beta^{-1}(\beta(v)))(\beta^{-1})'(\beta(v)) = 0$$
 for all v

$$\beta(v) \text{ solves } \max_{b}(v-b)H(\beta^{-1}(b)) \text{ for all } v$$

$$\Rightarrow$$

$$-H(\beta^{-1}(\beta(v))) + (v-\beta(v))H'(\beta^{-1}(\beta(v)))\frac{(\beta^{-1})'(\beta(v))}{(\beta^{-1})'(\beta(v))} = 0 \text{ for all } v$$

$$\Rightarrow$$

$$-H(v) + (v-\beta(v))H'(v)\frac{1}{\beta'(v)} = 0 \text{ for all } v$$

Recall: for differentiable function *f* with differentiable inverse,

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

(differentiate identity $f(f^{-1}(x)) = x$)

So for equilibrium,

$$-H(v) + (v - \beta(v))H'(v)\frac{1}{\beta'(v)} = 0 \quad \text{for all } v$$

 \Rightarrow

$$\beta'(v)H(v) + \beta(v)H'(v) = vH'(v)$$
 for all v

Integrate both sides:

$$\beta(v)H(v) = \int_{v}^{v} xH'(x) dx + C$$

Now, $H(\underline{v}) = 0$ and β is bounded $\Rightarrow C = 0$, so

Juries

$$\beta(v) = \frac{\int_{\underline{v}}^{v} x H'(x) \, dx}{H(v)} \text{ for all } v \in [\underline{v}, \overline{v}]$$

$$\beta^*(v) = \frac{\int_{\underline{v}}^{v} x H'(x) \, dx}{H(v)} \text{ for all } v \in [\underline{v}, \overline{v}].$$

Recall:

H = cumulative distribution function of **X** $\mathbf{X} =$ highest of n-1 randomly selected valuations

So:

$$\beta^*(v) = \frac{\int_{\underline{v}}^{v} x H'(x) \, dx}{H(v)} = \mathsf{E}(\mathbf{X} \mid \mathbf{X} < v) \text{ for all } v \in [\underline{v}, \overline{v}]$$

 $\Rightarrow \beta^*$ is increasing \Rightarrow strategy profile in which each type v of each player i bids $\beta^*(v)$ is Nash equilibrium of first-price auction

First-price auction

Proposition

An independent private values first-price sealed-bid auction has a Nash equilibrium in which the bid of each type v of each player is

$$\mathsf{E}(\mathbf{X} \mid \mathbf{X} < \mathbf{v})$$

Auctions

First-price auction

Interpretation

$$\beta^*(v) = \mathsf{E}(\mathsf{X} \mid \mathsf{X} < v) \text{ for all } v \in [\underline{v}, \overline{v}]$$

Juries

Player with valuation ν bids expected value of highest of other players' valuations over all lists of other players' valuations in which highest valuation is less than ν

Each bidder asks: Over all cases in which my valuation is the highest, what is expected value of highest of other players' valuations? She bids this expected value

Alternatively: player with valuation ν bids expected value of highest of the other players' valuations conditional on her winning

First-price auction

$$\beta^*(v) = \mathsf{E}(\mathsf{X} \mid \mathsf{X} < v) \quad \text{for all } v \in [\underline{v}, \overline{v}]$$

Other equilibria exist, but we select this equilibrium as the "distinguished" equilibrium

Comparative static: $n \uparrow \Rightarrow \beta(v) \uparrow$ for all v (because expected value of highest of other players' valuations increases)

When *n* is very large, $E(X \mid X < v)$ is close to v

Comparison of first- and second-price auctions

First-price auction

- ▶ Bidder with valuation v bids $E(X \mid X < v)$
- ▶ Winner is bidder with highest valuation v, who pays E(X | X < v)</p>

Second-price auction

- Bidder with valuation v bids v
- Winner is bidder with highest valuation v, who pays price equal to second-highest bid, the expected value of which is E(X | X < v)

Proposition (Revenue equivalence)

If each bidder is risk neutral then in a symmetric independent private values sealed-bid auction the distinguished Nash equilibria under first- and second-price rules yield the same expected revenue

Common value auctions

- In many auctions, bidders' valuations are not independent
- Instead, bidders' valuations may be related to each other
- Even a buyer of a work of art may care about its resale value, which depends on other people's valuations of it
- Interdependence of values introduces considerations not present when values are independent

Common value auctions

Drilling for oil

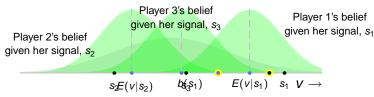
- All firms value oil in the same way
- But no firm knows amount available
- Each firm i privately takes a sample, which generates a signal s_i about amount available
- Samples differ, so firms' estimates of amount available differ
- ▶ If firm *i* were to know all firms' signals, $(s_1, ..., s_n)$, then its estimate of the amount available would be $v_i(s_1, ..., s_n)$
- Assume v_i is increasing in s_i and nondecreasing in s_j for j ≠ i
- ▶ Special case: $v_i(s_1,...,s_n) = s_i$ (private valuations)
- ▶ Special case: $v_i = u$, same for all i (pure common values)

Common value auctions

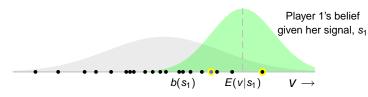
Drilling for oil: "mineral rights" model

- $v_i = u$, same for all i (pure common values)
- Value of random variable v is true value of oil
- Players' signals are independent conditional on v and the expectation of each s_i equal to v

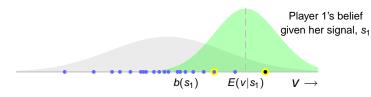
- ► Each player sees only her own signal
- Signal and prior belief ⇒ posterior distribution of v (via Bayes' law)
- ▶ Different players get different signals, so their estimates of the value based on these signals differ



- Each player sees only her own signal
- Signal and prior belief ⇒ posterior distribution of v (via Bayes' law)
- Different players get different signals, so their estimates of the value based on these signals differ



- Each black dot represents the signal received by a player
- ► Each blue dot represents the expectation of *v* given the corresponding signal—that is, *E*(*v* | signal is *s_i*)



- Consider second-price auction
- Suppose that each player's bid is the expectation of the value based solely on her own signal
- ► Then player with highest signal wins and pays price equal to expected value of *v* given second-highest signal

Common value auctions

Player 1's belief Drilling for oil given her signal, s₁, and the fact that all Player 1's belief other signals are $< s_1$ given her signal, s₁, (19 bidders) and the fact that all other signals are $< s_1$ Player 1's belief (100 bidders) given her signal, s1 $b(s_1)$ $E(v|s_1)$ $V \rightarrow$

- The fact that she wins tells her that all other signals are less than hers
- ► Given this information, she believes that *v* is likely to be less than her estimate based solely on her own signal
- ► Typically, probability that second highest bid will exceed actual value is high, especially with many bidders
- Effect is known as winner's curse

Common value auctions Drilling for oil Player 1's belief

Player 1's belief given her signal, s_1 , and the fact that all other signals are $\leq s_1$ (100 bidders)

Player 1's belief given her signal, s_1 , signals of all other players $\leq s_1$, and signal of at least one other player $= s_1$ (19 bidders)

Player 1's belief given her signal, s_1

 $V \rightarrow$

 $E(v|s_1)$

When formulating bid, player should take into account that if she wins, all other players' signals will be lower than hers

 $b(s_1)$

 She should take this information into account, and base her bid on estimate of value conditional on her winning (given other players' strategies)

Player 1's belief Common value auctions given her signal, s1, signals of all other Drilling for oil players $\leq s_1$, Player 1's belief and signal of at least one other player = s_1 given her signal, s₁, (19 bidders) and the fact that all other signals are $< s_1$ Player 1's belief (100 bidders) given her signal, s1 $E(v|s_1)$ $b(s_1)$ $V \rightarrow$

► In Nash equilibrium of second-price auction, player *i* with signal *s_i* bids

$$b(s_i) =$$
 $E(v \mid i$'s signal is s_i , signals of all other players are $\leq s_i$, and signal of at least one other player is equal to s_i)

▶ This expectation is typically much less than $E(v \mid s_i)$

- n jurors
- \blacktriangleright Each juror has same prior belief that defendant is guilty with probability π
- All jurors share same goal: convict guilty person, acquit innocent one
- But jurors may interpret evidence differently

Juries

Information structure

- Model each juror as receiving a signal from the evidence
- If defendant guilty, more likely to get guilty signal; if defendant innocent, more likely to get innocent signal

Jurors do not share signals; they do not deliberate

Juries

Actions and outcome

- After all jurors have received their signals, each juror votes to acquit or convict
- Defendant is convicted only if all jurors vote to convict

Auctions

Juries

Juries

Bayesian game

```
Players The n jurors
 States \{(X, s_1, \dots, s_n) : X \in \{G, I\} \text{ and } s_i \in \{g, b\} \text{ for } i = I\}
          1....n}
Actions A_i = \{Convict, Acquit\}\ for i = 1, ..., n
Signals T_i = \{g, b\} and \tau_i(X, s_1, \dots, s_n) = s_i for
          i=1,\ldots,n
Beliefs For state (G, s_1, \ldots, s_n) in which k signals are g
          and n-k are b, common prior probability is
          \pi p^k (1-p)^{n-k}; for state (I, s_1, \ldots, s_n) in which k
          signals are q and n-k are b, common prior
          probability is (1-\pi)(1-q)^kq^{n-k}
```

Juries

Bayesian game, continued

Payoffs

$$u_{i}(a,\omega) = \begin{cases} 0 & \text{if } \omega_{1} = G \text{ and } a_{j} = Convict \text{ for all } j \\ 0 & \text{if } \omega_{1} = I \text{ and } a_{j} = Acquit \text{ for some } j \\ -z & \text{if } \omega_{1} = I \text{ and } a_{j} = Convict \text{ for all } j \\ -(1-z) & \text{if } \omega_{1} = G \text{ and } a_{j} = Acquit \text{ for some } j \end{cases}$$
 with $0 < z < 1$

Interpretation of payoffs

- Let posterior probability juror assigns to guilt be r
- ▶ Juror prefers acquittal if -r(1-z) > -(1-r)z, or r < z
- So z is cutoff probability for juror's preferring to convict

Is the outcome in which every juror votes according to her signal an equilibrium?

Juror's decision

- Consider juror i
- Suppose that every other juror votes according to her signal

		outer juriero digitalo					
		all	n – 2		1	all	
		innocent	innocent		innocent	guilty	
juror <i>i</i>	Acquit	Α	Α		Α	Α	
•	Convict	Α	Α		Α	С	

Outcome (A = acquittal, C = conviction)

other jurors' signals

Juries

Juror's decision

		otner jurors' signals					
		all	<i>n</i> − 2	, ,	1	all	
		innocent	innocent		innocent	guilty	
juror <i>i</i>	Acquit	Α	Α		Α	A	
•	Convict	Α	Α		Α	C	

Outcome (
$$A =$$
acquittal, $C =$ conviction)

- How should juror i vote?
- Her action makes a difference to the outcome only if all the other jurors' signals are guilty

Juries

Juror's decision

otner jurors' signals					
all	<i>n</i> − 2		1	all	
innocent	innocent		innocent	guilty	
Α	Α		Α	A	
Α	Α		Α	C	
		$\begin{array}{c c} \text{all} & n-2 \\ \text{innocent} & \text{innocent} \\ \hline A & A \end{array}$	all $n-2$ innocent innocent A A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Outcome (
$$A =$$
acquittal, $C =$ conviction)

- 41- - - 1 - 1 - 1 - 1 - 1 - 1

- Suppose her signal is innocent
- Then Acquit is optimal for her if
 - $-\Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal})(1-z) + \Pr(I \mid n-1 \text{ guilty signals and 1 innocent signal}) \cdot 0$
 - $\geq \Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal}) \cdot 0$
 - $-\Pr(I \mid n-1 \text{ guilty signals and 1 innocent signal})z$

Juries

Auctions

Juror's decision

otilei jaiois signais					
all	n – 2		1	all	
innocent	innocent		innocent	guilty	
Α	Α		Α	A	
Α	Α		Α	C	
		$\begin{array}{c c} \text{all} & n-2 \\ \hline \textit{innocent} & \textit{innocent} \\ \hline A & A \end{array}$	all $n-2$ innocent innocent A A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Outcome (
$$A =$$
acquittal, $C =$ conviction)

other jurges' signals

$$-\Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal})(1-z)$$

$$\geq -\Pr(I\mid n-1 \text{ guilty signals and 1 innocent signal})z$$

$$\Leftrightarrow$$

$$Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal})(1-z)$$

 $\leq (1-Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal}))z$

Juror's decision

		otiloi jaroro digitato						
		all	<i>n</i> − 2		1	all		
		innocent	innocent		innocent	guilty		
juror <i>i</i>	Acquit	Α	Α		Α	A		
	Convict	Α	Α		Α	C		

Outcome (
$$A =$$
acquittal, $C =$ conviction)

other jurors' signals

or

 $Pr(G \mid n-1 \text{ guilty signals and 1 innocent signal}) \leq z$

$$\Leftrightarrow \frac{(1-p)p^{n-1}\pi}{(1-p)p^{n-1}\pi + q(1-q)^{n-1}(1-\pi)} \le z$$

$$\Leftrightarrow \frac{1}{1 + \frac{q}{1-p}\left(\frac{1-q}{p}\right)^{n-1}\frac{1-\pi}{\pi}} \le z$$

Juries

Juror's decision

		otilei julois signais					
		all	<i>n</i> − 2		1	all	
		innocent	innocent		innocent	guilty	
juror <i>i</i>	Acquit	Α	Α		Α	A	
-	Convict	Α	Α		Α	C	

Outcome (A =acquittal, C =conviction)

other jurers' cianale

- Conclusion: given z < 1, for n large enough, juror with innocent signal optimally votes Convict
- ► Thus for *n* large enough, every juror's voting according to her signal is *not* a Nash equilibrium
- ▶ n may not have to be very large: if p = q = 0.8, $\pi = 0.5$, and n = 12, LHS of inequality exceeds 0.999999
- If juror with innocent signal optimally votes Convict, then so does juror with guilty signal

Juries

Conclusion

- If all other jurors vote according to their signals, the remaining juror should vote for conviction regardless of her signal
- So there is no equilibrium in which all jurors vote according to their signals
- ▶ Note that we have not determined what is an equilibrium