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I Goods sold by auction:
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I Treasury bills
I Ads on search engines (Google ad revenue second quarter

2016 about $19 billion)
I Oil tracts, timber
I Wireless spectrum (for cell phones, TV, . . . ): revenue from

2008 auction in Canada $4.25 billion
I Government contracts
I Everything: eBay’s 2015 sales revenue $22 billion
I Repairs to your house
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simultaneously (sealed-bid)
I Sale price = highest bid or some other price
I Single object for sale (e.g. work of art), or many

interrelated objects (e.g. licences to use radio spectrum for
wireless communication in connected areas)

I Each player’s value of object may be independent of other
players’ valuations, or dependent on them



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale
I n bidders



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale
I n bidders
I Each bidder’s valuation of object known to her, fixed

independently of other bidders’ valuations



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale
I n bidders
I Each bidder’s valuation of object known to her, fixed

independently of other bidders’ valuations
I Each bidder doesn’t know other bidders’ valuations;

believes each is drawn independently from same
distribution F on [v , v ]



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale
I n bidders
I Each bidder’s valuation of object known to her, fixed

independently of other bidders’ valuations
I Each bidder doesn’t know other bidders’ valuations;

believes each is drawn independently from same
distribution F on [v , v ]

I Bids submitted simultaneously



Auctions Juries

Single object independent private values sealed-bid
auction

I Single object for sale
I n bidders
I Each bidder’s valuation of object known to her, fixed

independently of other bidders’ valuations
I Each bidder doesn’t know other bidders’ valuations;

believes each is drawn independently from same
distribution F on [v , v ]

I Bids submitted simultaneously
I Bidder who submits highest bid wins
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Second-price auction

I Price paid by winner is highest losing bid (absent ties,
second highest bid)

I One reason why rule is interesting: models open oral
ascending (“English”) auction:
I given independent private values, bidders don’t learn from

others’ bids
I so can model players’ strategies as limit bids (price at

which to drop out)
I price stops increasing when n − 1 bidders have dropped

out⇒ price paid by winner is slightly above second highest
limit bid
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Second-price auction

Ascending auction

I Suppose 4 bidders with limit bids m1,
m2, m3, and m4

I Price starts low: everyone wants to bid
I As price rises, bidders drop out
I Once price goes above m1, bidding

stops⇒ bidder 4 wins and pays price
slightly above m1—second highest limit
bid

m2

m3

m1

m4
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Bayesian game

Players N = {1, . . . , n} (bidders)

States Ω = {(v1, . . . , vn) : v ≤ vi ≤ v for all i}

Actions Ai = R+ for each i ∈ N (bid = any nonnegative
number)

Signals Ti = [v , v ] and τi(v1, . . . , vn) = vi for all (v1, . . . , vn)
and all i ∈ N (each player knows own valuation)

Beliefs Every player believes that the other players’
valuations are independent draws from F : each
player i assigns probability Πn

j=1F (vj) to the set of
states in which the valuation of every player j is at
most vj
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Second-price auction

Bayesian game continued

Payoff functions

ui ((b1, . . . , bn), (v1, . . . , vn)) =






vi −maxj 6=i bj if bj < bi for all j 6= i
(vi − bi )/m if bj ≤ bi for all j ∈ N and

|{j ∈ N : bj = bi}| = m ≥ 2
0 if bj > bi for some j 6= i
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Single object independent private value sealed-bid
auction: Second-price rule

Bayesian game continued

Payoff functions

ui ((b1, . . . , bn), (v1, . . . , vn)) =






vi −maxj 6=i bj

|{j ∈ N : bj = bi}|
if bj ≤ bi for all j ∈ N

0 if bj > bi for some j 6= i .

Notes
I bidders risk-neutral
I auction symmetric (all valuations drawn from same

distribution)
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Because a player’s bidding her valuation weakly dominates all
her other actions . . .

Proposition
An independent private values second-price sealed-bid auction
has a Nash equilibrium in which every type of every player bids
her valuation.

The game has also other equilibria, but we select this one as
“distinguished”
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A player’s bid equal to her valuation does not weakly dominate
all other bids in a first-price auction:
I vi weakly dominates higher bids
I but not lower bids
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First-price auction

A player’s bid equal to her valuation does not weakly dominate
all other bids in a first-price auction:
I vi weakly dominates higher bids
I but not lower bids
I In fact, any bid bi < vi weakly dominates bi = vi

Expected payoff of type vi of i

bi = vi

bi

vi − bi
bi > vi

bi

bi < vi
vi − bi

b →vi



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)
I Guess Nash equilibrium in which



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)
I Guess Nash equilibrium in which

I βi (vi ) ≤ vi for all vi



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)
I Guess Nash equilibrium in which

I βi (vi ) ≤ vi for all vi
I βi = β for all i ∈ N (symmetric equilibrium)



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)
I Guess Nash equilibrium in which

I βi (vi ) ≤ vi for all vi
I βi = β for all i ∈ N (symmetric equilibrium)
I β is increasing (higher valuation⇒ higher bid) and

continuous



Auctions Juries

First-price auction
Nash equilibrium
I Denote bid of type vi of player i by βi(vi)
I Guess Nash equilibrium in which

I βi (vi ) ≤ vi for all vi
I βi = β for all i ∈ N (symmetric equilibrium)
I β is increasing (higher valuation⇒ higher bid) and

continuous

β(v)

v →v v

b

β−1(b)



Auctions Juries

First-price auction
Argument that β(v) = v :
I β(v) < v ⇒ β(v) < v for v close to v (given β continuous)

β(v)

v →v v

b

v

β−1(b)



Auctions Juries

First-price auction
Argument that β(v) = v :
I β(v) < v ⇒ β(v) < v for v close to v (given β continuous)
I Player with valuation v wins with probability 0

β(v)

v →v v

b

v

β−1(b)



Auctions Juries

First-price auction
Argument that β(v) = v :
I β(v) < v ⇒ β(v) < v for v close to v (given β continuous)
I Player with valuation v wins with probability 0
I If player with valuation v increases bid to b′ she wins when

highest other valuation < v ′ ⇒ with positive probability

b′

v ′

β(v)

v →v v

b

v

β−1(b)



Auctions Juries

First-price auction
Argument that β(v) = v :
I β(v) < v ⇒ β(v) < v for v close to v (given β continuous)
I Player with valuation v wins with probability 0
I If player with valuation v increases bid to b′ she wins when

highest other valuation < v ′ ⇒ with positive probability

b′

v ′

β(v)

v →v v

b

v

β−1(b)



Auctions Juries

First-price auction

I Consider player i



Auctions Juries

First-price auction

I Consider player i
I Suppose that all other players bid according to β



Auctions Juries

First-price auction

I Consider player i
I Suppose that all other players bid according to β
I For equilibrium, β(v) must be optimal for every type v of

player i , given other players’ bids



Auctions Juries

First-price auction

I Consider player i
I Suppose that all other players bid according to β
I For equilibrium, β(v) must be optimal for every type v of

player i , given other players’ bids
I That is, for all v

bid of β(v) maximizes expected payoff of type v



Auctions Juries

First-price auction

I Consider player i
I Suppose that all other players bid according to β
I For equilibrium, β(v) must be optimal for every type v of

player i , given other players’ bids
I That is, for all v

bid of β(v) maximizes expected payoff of type v

⇒

β(v) solves max
b

(v − b) Pr (all other bids < b)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) =



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations

β(v)

v →v v

b

β−1(b)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

β(v)

v →v v

b

β−1(b)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

β(v)

v →v v

b

β−1(b)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations

H = cumulative distribution function of X



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations

H = cumulative distribution function of X

⇒ Pr (highest of other valuations < β−1(b)) = H(β−1(b))



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations

H = cumulative distribution function of X

⇒ Pr (highest of other valuations < β−1(b)) = H(β−1(b))



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations

H = cumulative distribution function of X

⇒ Pr (highest of other valuations < β−1(b)) = H(β−1(b))



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,

Pr (all other bids < b) = Pr (all other valuations < β−1(b))

= Pr (highest of other valuations < β−1(b))

Let

X = highest of n − 1 randomly selected valuations

H = cumulative distribution function of X

⇒ Pr (highest of other valuations < β−1(b)) = H(β−1(b))



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)Pr (all other bids < b) for all v

Now,
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b

(v − b)H(β−1(b)) for all v

If H is differentiable then

b∗ solves max
b

(v − b)H(β−1(b))

⇒ at least for b∗ > 0

− H(β−1(b∗)) + (v − b∗)H ′(β−1(b∗))(β−1)′(b∗) = 0

Thus
β(v) solves max

b
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⇒
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Auctions Juries

First-price auction

β(v) solves max
b

(v − b)H(β−1(b)) for all v

⇒

−H(β−1(β(v))) + (v − β(v))H ′(β−1(β(v)))(β−1)′(β(v)) = 0 for all v



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)H(β−1(b)) for all v

⇒

−H(β−1(β(v))) + (v − β(v))H ′(β−1(β(v)))(β−1)′(β(v)) = 0 for all v

⇒

−H(v) + (v − β(v))H ′(v)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)H(β−1(b)) for all v

⇒

−H(β−1(β(v))) + (v − β(v))H ′(β−1(β(v)))(β−1)′(β(v)) = 0 for all v

⇒

−H(v) + (v − β(v))H ′(v)

Recall: for differentiable function f with differentiable inverse,

(f−1)′(x) =
1

f ′(f−1(x))

(differentiate identity f (f−1(x)) = x)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)H(β−1(b)) for all v

⇒

−H(β−1(β(v))) + (v − β(v))H ′(β−1(β(v)))(β−1)′(β(v)) = 0 for all v

⇒

−H(v) + (v − β(v))H ′(v)
1

β′(v)

Recall: for differentiable function f with differentiable inverse,

(f−1)′(x) =
1

f ′(f−1(x))

(differentiate identity f (f−1(x)) = x)



Auctions Juries

First-price auction

β(v) solves max
b

(v − b)H(β−1(b)) for all v

⇒

−H(β−1(β(v))) + (v − β(v))H ′(β−1(β(v)))(β−1)′(β(v)) = 0 for all v

⇒

−H(v) + (v − β(v))H ′(v)
1

β′(v)
= 0 for all v

Recall: for differentiable function f with differentiable inverse,

(f−1)′(x) =
1

f ′(f−1(x))

(differentiate identity f (f−1(x)) = x)
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First-price auction
So for equilibrium,

−H(v) + (v − β(v))H ′(v)
1

β′(v)
= 0 for all v

⇒
β′(v)H(v) + β(v)H ′(v) = vH ′(v) for all v

Integrate both sides:

β(v)H(v) =

∫ v

v
xH ′(x) dx + C

Now, H(v) = 0 and β is bounded⇒ C = 0, so

β(v) =

∫ v
v xH ′(x) dx

H(v)
for all v ∈ [v , v ]
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First-price auction

β∗(v) =

∫ v
v xH ′(x) dx

H(v)
for all v ∈ [v , v ].

Recall:

H = cumulative distribution function of X

X = highest of n − 1 randomly selected valuations

So:

β∗(v) =

∫ v
v xH ′(x) dx

H(v)
= E(X | X < v) for all v ∈ [v , v ]

⇒ β∗ is increasing⇒ strategy profile in which each type v of
each player i bids β∗(v) is Nash equilibrium of first-price
auction



Auctions Juries

First-price auction

Proposition
An independent private values first-price sealed-bid auction has
a Nash equilibrium in which the bid of each type v of each
player is

E(X | X < v)
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First-price auction

Interpretation

β∗(v) = E(X | X < v) for all v ∈ [v , v ]

Player with valuation v bids expected value of highest of other
players’ valuations over all lists of other players’ valuations in
which highest valuation is less than v

Each bidder asks: Over all cases in which my valuation is the
highest, what is expected value of highest of other players’
valuations? She bids this expected value

Alternatively: player with valuation v bids expected value of
highest of the other players’ valuations conditional on her
winning
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First-price auction

β∗(v) = E(X | X < v) for all v ∈ [v , v ]

Other equilibria exist, but we select this equilibrium as the
“distinguished” equilibrium

Comparative static: n ↑ ⇒ β(v) ↑ for all v
(because expected value of highest of other players’ valuations
increases)

When n is very large, E(X | X < v) is close to v
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I Bidder with valuation v bids v
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If each bidder is risk neutral then in a symmetric independent
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equilibria under first- and second-price rules yield the same
expected revenue
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Comparison of first- and second-price auctions

First-price auction
I Bidder with valuation v bids E(X | X < v)

I Winner is bidder with highest valuation v , who pays
E(X | X < v)

Second-price auction
I Bidder with valuation v bids v
I Winner is bidder with highest valuation v , who pays price

equal to second-highest bid, the expected value of which is
E(X | X < v)

Proposition (Revenue equivalence)
If each bidder is risk neutral then in a symmetric independent
private values sealed-bid auction the distinguished Nash
equilibria under first- and second-price rules yield the same
expected revenue
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Common value auctions

I In many auctions, bidders’ valuations are not independent
I Instead, bidders’ valuations may be related to each other
I Even a buyer of a work of art may care about its resale

value, which depends on other people’s valuations of it
I Interdependence of values introduces considerations not

present when values are independent
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Common value auctions

Drilling for oil

I All firms value oil in the same way
I But no firm knows amount available
I Each firm i privately takes a sample, which generates a

signal si about amount available
I Samples differ, so firms’ estimates of amount available

differ
I If firm i were to know all firms’ signals, (s1, . . . , sn), then its

estimate of the amount available would be vi(s1, . . . , sn)

I Assume vi is increasing in si and nondecreasing in sj for
j 6= i

I Special case: vi(s1, . . . , sn) = si (private valuations)
I Special case: vi = u, same for all i (pure common values)
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Common value auctions

Drilling for oil: “mineral rights” model

I vi = u, same for all i (pure common values)
I Value of random variable v is true value of oil
I Players’ signals are independent conditional on v and the

expectation of each si equal to v
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Drilling for oil

v →

Dist. of signal
if true value is v1

v1
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the value based on these signals differ



Auctions Juries

Common value auctions
Drilling for oil

v →s1

Player 1’s belief
given her signal, s1

E(v |s1)s2

Player 2’s belief
given her signal, s2

E(v |s2) s3

Player 3’s belief
given her signal, s3

I Each player sees only her own signal
I Signal and prior belief⇒ posterior distribution of v (via

Bayes’ law)
I Different players get different signals, so their estimates of

the value based on these signals differ



Auctions Juries

Common value auctions
Drilling for oil

v →
I Each black dot represents the signal received by a player
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Common value auctions
Drilling for oil

v →
I Each black dot represents the signal received by a player
I Each blue dot represents the expectation of v given the

corresponding signal—that is, E(v | signal is si)
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Common value auctions
Drilling for oil

v →
I Consider second-price auction
I Suppose that each player’s bid is the expectation of the

value based solely on her own signal
I Then player with highest signal wins and pays price equal

to expected value of v given second-highest signal
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I Given this information, she believes that v is likely to be
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I Typically, probability that second highest bid will exceed
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v →

Player 1’s belief
given her signal, s1

E(v |s1)

Player 1’s belief
given her signal, s1,
and the fact that all

other signals are ≤ s1

(19 bidders)

Player 1’s belief
given her signal, s1,
and the fact that all

other signals are ≤ s1

(100 bidders)

I The fact that she wins tells her that all other signals are
less than hers

I Given this information, she believes that v is likely to be
less than her estimate based solely on her own signal

I Typically, probability that second highest bid will exceed
actual value is high, especially with many bidders

I Effect is known as winner’s curse
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Common value auctions
Drilling for oil

v →

Player 1’s belief
given her signal, s1

E(v |s1)

I When formulating bid, player should take into account that
if she wins, all other players’ signals will be lower than hers

I She should take this information into account, and base
her bid on estimate of value conditional on her winning
(given other players’ strategies)
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E(v |s1)b(s1)

Player 1’s belief
given her signal, s1,
signals of all other

players ≤ s1,
and signal of at least
one other player = s1

(19 bidders)

I In Nash equilibrium of second-price auction, player i with
signal si bids

b(si) =

E(v | i ’s signal is si , signals of all other players are ≤ si ,

and signal of at least one other player is equal to si)
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Common value auctions
Drilling for oil

v →

Player 1’s belief
given her signal, s1

E(v |s1)b(s1)

Player 1’s belief
given her signal, s1,
signals of all other

players ≤ s1,
and signal of at least
one other player = s1

(19 bidders)

I In Nash equilibrium of second-price auction, player i with
signal si bids

b(si) =

E(v | i ’s signal is si , signals of all other players are ≤ si ,

and signal of at least one other player is equal to si)

I This expectation is typically much less than E(v | si)
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Juries

Information structure

I Model each juror as receiving a signal from the evidence
I If defendant guilty, more likely to get guilty signal; if

defendant innocent, more likely to get innocent signal

If defendant guilty

p 1− p

Signal guilty Signal innocent

p > 1
2

If defendant innocent

1− q q

Signal guilty Signal innocent

q > 1
2

I Jurors do not share signals; they do not deliberate
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Juries

Actions and outcome

I After all jurors have received their signals, each juror votes
to acquit or convict

I Defendant is convicted only if all jurors vote to convict
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Bayesian game

Players The n jurors

States {(X , s1, . . . , sn) : X ∈ {G, I} and si ∈ {g, b} for i =
1, . . . , n}

Actions Ai = {Convict,Acquit} for i = 1, . . . , n

Signals Ti = {g, b} and τi(X , s1, . . . , sn) = si for
i = 1, . . . , n

Beliefs For state (G, s1, . . . , sn) in which k signals are g
and n − k are b, common prior probability is
πpk (1− p)n−k ; for state (I, s1, . . . , sn) in which k
signals are g and n − k are b, common prior
probability is (1− π)(1− q)kqn−k
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Bayesian game, continued

Payoffs

ui(a, ω) =






0 if ω1 = G and aj = Convict for all j

0 if ω1 = I and aj = Acquit for some j

−z if ω1 = I and aj = Convict for all j

−(1− z) if ω1 = G and aj = Acquit for some j

with 0 < z < 1

Interpretation of payoffs

I Let posterior probability juror assigns to guilt be r
I Juror prefers acquittal if −r(1− z) > −(1− r)z, or r < z
I So z is cutoff probability for juror’s preferring to convict
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juror i

other jurors’ signals
all

innocent
n − 2
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guilty
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I How should juror i vote?
I Her action makes a difference to the outcome only if all the

other jurors’ signals are guilty
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I Suppose her signal is innocent
I Then Acquit is optimal for her if

−Pr(G | n − 1 guilty signals and 1 innocent signal)(1− z)

+ Pr(I | n − 1 guilty signals and 1 innocent signal) · 0

≥ Pr(G | n − 1 guilty signals and 1 innocent signal) · 0

− Pr(I | n − 1 guilty signals and 1 innocent signal)z

She votes to convict
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juror i

other jurors’ signals
all
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Convict A A . . . A C

Outcome (A = acquittal, C = conviction)

I or

−Pr(G | n−1 guilty signals and 1 innocent signal)(1−z)

≥ −Pr(I | n − 1 guilty signals and 1 innocent signal)z

⇔

Pr(G | n − 1 guilty signals and 1 innocent signal)(1− z)

≤ (1−Pr(G | n−1 guilty signals and 1 innocent signal))z
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I or

Pr(G | n − 1 guilty signals and 1 innocent signal) ≤ z

⇔ (1− p)pn−1π

(1− p)pn−1π + q(1− q)n−1(1− π)
≤ z

Pr(n− 1 guilty signals and 1 innocent signal | G)
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I or

Pr(G | n − 1 guilty signals and 1 innocent signal) ≤ z

⇔ (1− p)pn−1π

(1− p)pn−1π + q(1− q)n−1(1− π)
≤ z

⇔ 1

1 + q
1−p

(1−q
p

)n−1 1−π
π

≤ z

p > 1
2 and q > 1

2 , so 1− q < p and hence
((1− q)/p)n−1 → 0 as n→∞, so LHS→ 1
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Juror’s decision

juror i

other jurors’ signals
all

innocent
n − 2

innocent . . .
1

innocent
all

guilty
Acquit A A . . . A A

Convict A A . . . A C

Outcome (A = acquittal, C = conviction)

I Conclusion: given z < 1, for n large enough, juror with
innocent signal optimally votes Convict

I Thus for n large enough, every juror’s voting according to
her signal is not a Nash equilibrium

I n may not have to be very large: if p = q = 0.8, π = 0.5,
and n = 12, LHS of inequality exceeds 0.999999

I If juror with innocent signal optimally votes Convict, then
so does juror with guilty signal
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Juries

Conclusion

I If all other jurors vote according to their signals, the
remaining juror should vote for conviction regardless of her
signal

I So there is no equilibrium in which all jurors vote according
to their signals

I Note that we have not determined what is an equilibrium
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