Economics 2030

Fall 2018

Martin J. Osborne

Solutions to Problem Set 2

1. In a second-price auction, the payoff of each player i is $v_i - b_j$ if her bid b_i is equal to the highest bid and b_j is the highest of the other players' bids (possibly equal to b_i) and no player with a lower index submits this bid, and 0 otherwise.

To show that for any player *i* the bid $b_i = v_i$ weakly dominates any other bid, let x_i be another bid of player *i*.

- If $\max_{j \neq i} b_j \ge v_i$ then if player *i* bids v_i she guarantees herself a payoff of 0, while by bidding x_i she either does not obtain the object or receives a nonpositive payoff.
- If $\max_{j \neq i} b_j < v_i$ then if player *i* bids v_i she obtains the good at the price $\max_{j \neq i} b_j$, while by bidding x_i either she wins and pays the same price or loses.

Thus player *i*'s payoff from the bid v_i is at least her payoff from another other action. To complete the argument that v_i weakly dominates any other bid, we need to show that for any other bid x_i there are actions of the other players for which the payoff from bidding v_i is higher than the payoff from bidding x_i . If $x_i \neq v_i$, the payoff from bidding v_i is higher than the payoff from bidding x_i when the highest of the other players' bids is between x_i and v_i .

Thus the bid v_i of player *i* weakly dominates every other bid.

An equilibrium in which player *j* obtains the good is that in which $b_1 < v_j$, $b_j > v_1$, and $b_i = 0$ for all players $i \notin \{1, j\}$.

2. (a) Suppose that all players other than 1 choose the number 1. If player 1 chooses any number from 2 to *K*, she loses. Thus no action from 2 to *K* strictly dominates any action.

I now argue that the action 1 does not strictly dominate any action. Suppose that one of the other players announces 2 and each of the remaining players announces *K*. I claim that if player 1 announces 1, she loses. To demonstrate this claim, note that for the action profile (1, 2, K, ..., K), two-thirds of the average is $\frac{2}{3}K - (\frac{2}{3}K - 1)(2/n)$, which is increasing in n (the number of players). Thus two-thirds of the average is smallest when n = 3, in which case it is $\frac{2}{9}K + \frac{2}{3}$. This number is smallest when K = 4, in which case it is $\frac{14}{9}$, which is closer to 2 than it is to 1. Thus for any $n \ge 3$ and $K \ge 4$, announcing 1 loses when one of the other players announces 2 and each of the remaining players announces K. Hence the action of announcing 1 does not strictly dominate any other action.

(b) I claim that the action *K* is strictly dominated by the action K - 1. First I argue that two-thirds of the average of *K* and n - 1 numbers from 1 to *K* is less than $K - \frac{1}{2}$. The highest value possible for this average is $\frac{2}{3} \cdot K$, which is less than $K - \frac{1}{2}$ if $K > \frac{3}{2}$. Given this fact, if a player announcing *K* deviates to K - 1 then regardless of the other players' announcements, she prefers the resulting action profile: given that two-thirds of the average of the announcements is less than $K - \frac{1}{2}$, K - 1 is closer to two-thirds of the average of *K* and the other players' announcements than *K* is to two-thirds of the average of of *K* and the other players' announcements.

Given that K - 1 strictly dominates K, K can be eliminated. In the reduced game, K - 2 strictly dominates K - 1, so that K - 1 can be eliminated. Continuing this process, only 1 remains. Thus the only possible Nash equilibrium of the game is the action profile in which every player announces 1.

3. The set of actions $[0, \alpha]$ of each player is nonempty, compact, and convex.

The payoff function of firm *i* is

$$u_i(q) = q_i \max\left\{\alpha - q_i - \sum_{j \neq i} q_j, 0\right\} - cq_i,$$

which is continuous. (Note that we can write the inverse demand function as $\max{\{\alpha - Q, 0\}}$.) Thus the preference relation that this payoff function represents is continuous (see, for example, Exercise 3.C.2 in Mas-Colell, Whinston, and Green).

To show that u_i (and hence the preference relation that it represents) is quasiconcave on A_i (= [0, α]), we need to show that for any profile

 \overline{q} of actions, the set

$$\{q_i \in [0, \alpha] : u_i(\overline{q}_{-i}, q_i) \ge u_i(\overline{q})\}$$

is convex. This set is the set of all numbers q_i such that

$$q_i \max\left\{ \alpha - q_i - \sum_{j \neq i} \overline{q}_j, 0 \right\} - cq_i \ge u_i(\overline{q}).$$

The function on the left-hand side of this inequality is concave for $0 \le q_i \le \alpha - \sum_{j \ne i} \overline{q}_j$ (it is a quadratic in q_i with negative second derivative on this interval), is continuous, and is decreasing for $q_i > \alpha - \sum_{j \ne i} \overline{q}_j$ (it is equal to $-cq_i$ on this interval). Thus for any value of \overline{q} , the set of numbers q_i that satisfy the inequality is a (possibly empty) interval, and in particular is convex. Thus u_i is quasiconcave on A_i .

4. The top game is not equivalent, by the following argument. Using either player's payoffs, for equivalence we need α and $\beta > 0$ such that

$$0 = \alpha + \beta \cdot 0$$
, $2 = \alpha + \beta \cdot 1$, $3 = \alpha + \beta \cdot 3$, and $4 = \alpha + \beta \cdot 4$.

From the first equation we have $\alpha = 0$ and hence from the second we have $\beta = 2$. But these values do not satisfy the last two equations. (Alternatively, note that in the *Prisoner's Dilemma* in Figure 17.1, player 1 is indifferent between (*Confess*, *Confess*) and the lottery in which (*Don't confess*, *Confess*) occurs with probability $\frac{2}{3}$ and (*Don't confess*, *Don't confess*) occurs with probability $\frac{1}{3}$, while in the left-hand game she is not.)

The bottom game is equivalent, by the following argument. For the equivalence of player 1's payoffs, we need α and $\beta > 0$ such that

$$0 = \alpha + \beta \cdot 0$$
, $3 = \alpha + \beta \cdot 1$, $9 = \alpha + \beta \cdot 3$, and $12 = \alpha + \beta \cdot 4$.

The first two equations yield $\alpha = 0$ and $\beta = 3$; these values satisfy the second two equations. A similar argument for player 2's payoffs yields $\alpha = -4$ and $\beta = 2$.

5. The best response functions for the left game are shown in the left panel of Figure 1. We see that the game has a unique mixed strategy Nash equilibrium $((\frac{1}{4}, \frac{3}{4}), (\frac{2}{3}, \frac{1}{3}))$.

The best response functions for the right game are shown in the right panel of Figure 1. We see that the mixed strategy Nash equilibria are ((0,1), (1,0)) and any $(\{(p, 1-p)\}, (0,1))$ with $\frac{1}{2} \le p \le 1$.

Figure 1. The players' best response functions in the left game (left panel) and right game (right panel) in Exercise 6. The probability that player 1 assigns to T is p and the probability that player 2 assigns to L is q. The disks and the heavy line indicate Nash equilibria.