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Solutions to Problem Set 1

1. (a) Firm 1’s payoff function is
{

q1(α− c− q1 − q2 − · · · − qn) if q1 + q2 + · · ·+ qn ≤ α

−cq1 if q1 + q2 + · · ·+ qn > α.

This function is a quadratic in q1 where it is positive, and is zero
when q1 = 0 and when q1 = α− c− q2 − · · · − qn. Thus firm 1’s
best response function is

b1(q−1) =

{
(α− c− q2 − · · · − qn) /2 if q2 + · · ·+ qn ≤ α− c

0 if q2 + · · ·+ qn > α− c

(where q−1 stands for the list of the outputs of all the firms except
firm 1).

The best response functions of every other firm is the same.

(b) The conditions for (q∗1, . . . , q∗n) to be a Nash equilibrium are

q∗1 = b1(q∗−1)
q∗2 = b2(q∗−2)

...

q∗n = b2(q∗−n)

or, in an equilibrium in which all the firms’ outputs are positive,

q∗1 = 1
2(α− c− q∗2 − q∗3 − · · · − q∗n)

q∗2 = 1
2(α− c− q∗1 − q∗3 − · · · − q∗n)

...

q∗n = 1
2(α− c− q∗1 − q∗2 − · · · − q∗n−1).

1



(c) We can write the equations as

0 = α− c− 2q∗1 − q∗2 − · · · − q∗n−1 − q∗n
0 = α− c− q∗1 − 2q∗2 − · · · − q∗n−1 − q∗n

...

0 = α− c− q∗1 − q∗2 − · · · − q∗n−1 − 2q∗n.

If we subtract the second equation from the first we obtain 0 =
−q∗1 + q∗2, or q∗1 = q∗2. Similarly subtracting the third equation
from the second we conclude that q∗2 = q∗3, and continuing with
all pairs of equations we deduce that q∗1 = q∗2 = · · · = q∗n. Let the
common value of the firms’ outputs be q∗. Then each equation is
0 = α− c− (n + 1)q∗, so that q∗ = (α− c)/(n + 1).
In summary, the game has a unique Nash equilibrium, in which
the output of every firm i is (α− c)/(n + 1).

(d) The price at this equilibrium is α − n(α − c)/(n + 1), or (α +
nc)/(n + 1). As n increases this price decreases, approaching
c as n increases without bound: α/(n + 1) decreases to 0 and
nc/(n + 1) decreases to c.

2. The game is defined as follows.

Players {1, . . . , n}.

Actions The set of actions of each player i is [0, ∞) (the set of possible
bids).

Payoffs The payoff of player i is vi − bi if her bid bi is equal to the
highest bid and no player with a lower index submits this bid,
and 0 otherwise.

The set of Nash equilibria is the set of profiles b of bids with b1 ∈
[v2, v1], bj ≤ b1 for all j 6= 1, and bj = b1 for some j 6= 1.

That all these profiles are Nash equilibria is easy to verify. To see that
there are no other equilibria, first we argue that there is no equilibrium
in which player 1 does not obtain the object. Suppose that player i 6= 1
submits the highest bid bi and b1 < bi. If bi > v2 then player i’s payoff
is negative, so that he can increase his payoff by bidding 0. If bi ≤ v2
then player 1 can deviate to the bid bi and win, increasing his payoff.

Now let the winning bid be b∗. We have b∗ ≥ v2, otherwise player 2
can change his bid to some value in (v2, b∗) and increase his payoff.
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Also b∗ ≤ v1, otherwise player 1 can reduce her bid and increase her
payoff. Finally, bj = b∗ for some j 6= 1 otherwise player 1 can increase
her payoff by decreasing her bid.

3. (a) Any action profile (b1, . . . , bn) with the following properties is
such an equilibrium:

• the winning bid is b1

• the second-highest bid is at least v2 and is not submitted by
player 2
• the third-highest bid is less than v2 and at least vj, where j is

the player who submits the second-highest bid.

In such an action profile, player 1 wins and pays less than v2.
Denote by p∗ the price player 1 pays. If the player who submits
the second-highest bid changes her bid then either the outcome
does not change or, if her bid exceeds b1, she wins and pays the
price p∗, which is at least her valuation (by the third condition).
If any other player deviates either the outcome does not change
or, if the deviant’s bid exceeds b1, the deviant wins and pays a
price equal to the original second-highest bid, which is at least v2
and hence at least equal to the deviant’s valuation.
(Note that you are asked only to find one equilibrium. An exam-
ple of an action profile that satisfies the conditions is (b1, . . . , bn) =
(v1, vn, v3, v2, vn, . . . , vn).)

(b) Consider an action profile in which the winner is player n. Player n’s
bid bn must be the highest, and the third-highest bid must be at
most vn, otherwise player n’s payoff is negative so that she can do
better by bidding 0. But now consider a deviation by the player
submitting the second-highest bid. If she bids more than bn then
she wins and the price she pays is at most vn, so her payoff in-
creases. Hence no such action profile is a Nash equilibrium.

4. The best response of player i to cj is the value of ci that maximizes
vi
√

c1 + c2 − ci. This function is strictly concave, so that if its maxi-
mizer is positive, this maximizer is the solution of the first-order con-
dition

1
2 vi(c1 + c2)−1/2 − 1 = 0.

The solution is ci = 1
4(vi)2 − cj, where j = 2 if i = 1, and j = 1 if i = 2.

This solution is positive if cj <
1
4(vi)2. If cj ≥ 1

4(vi)2 then i’s payoff is
decreasing in ci, so that i’s best response is 0.

3



In summary, player i’s best response to cj is

bi(cj) =

{
0 if cj ≥ 1

4(vi)2

1
4(vi)2 − cj if cj <

1
4(vi)2

We deduce (draw a diagram of the best response functions) that for
any v1 6= v2 the game has a unique Nash equilibrium:

{
( 1

4(v1)2, 0) if v1 > v2

(0, 1
4(v2)2) if v1 < v2.

5. The game may be specified as follows.

Players N = {1, . . . , n}.

Actions Ai = [0, 1] ∪ {Out} for all i ∈ N.

Preferences a �i a′ if i obtains more votes than any other player in a
and ties with one or more players for the largest number of votes
in a′, or if she ties with one or more players for the largest number
of votes in a and a′i = Out, or if ai = Out and she loses in a′.

Let F be the distribution function of the citizens’ favorite positions and
let m = F−1( 1

2) be its median (which is unique, since the density f is
everywhere positive).

It is easy to check that for n = 2 the game has a unique Nash equilib-
rium, in which both players choose m.

The argument that for n = 3 the game has no Nash equilibrium is as
follows.

• There is no equilibrium in which some player becomes a can-
didate and loses, since that player could instead stay out of the
competition. Thus in any equilibrium all candidates must tie for
first place.

• There is no equilibrium in which a single player becomes a can-
didate, since by choosing the same position any of the remaining
players ties for first place.

• There is no equilibrium in which two players become candidates,
since by the argument for n = 2 in any such equilibrium they
must both choose the median position m, in which case the third
player can enter close to that position and win outright.
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• There is no equilibrium in which all three players become candi-
dates:

– if all three choose the same position then any one of them can
choose a position slightly different and win outright rather
than tying for first place;

– if two choose the same position while the other chooses a
different position then the lone candidate can move closer to
the other two and win outright.

– if all three choose different positions then (given that they
tie for first place) either of the extreme candidates can move
closer to his neighbor and win outright.
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