Economics 2030

Fall 2018

Martin J. Osborne

Solutions to Problem Set 1

1. (a) Firm 1's payoff function is

$$\begin{cases} q_1(\alpha - c - q_1 - q_2 - \dots - q_n) & \text{if } q_1 + q_2 + \dots + q_n \leq \alpha \\ -cq_1 & \text{if } q_1 + q_2 + \dots + q_n > \alpha. \end{cases}$$

This function is a quadratic in q_1 where it is positive, and is zero when $q_1 = 0$ and when $q_1 = \alpha - c - q_2 - \cdots - q_n$. Thus firm 1's best response function is

$$b_1(q_{-1}) = \begin{cases} (\alpha - c - q_2 - \dots - q_n) / 2 & \text{if } q_2 + \dots + q_n \le \alpha - c \\ 0 & \text{if } q_2 + \dots + q_n > \alpha - c \end{cases}$$

(where q_{-1} stands for the list of the outputs of all the firms except firm 1).

The best response functions of every other firm is the same.

(b) The conditions for (q_1^*, \ldots, q_n^*) to be a Nash equilibrium are

$$q_1^* = b_1(q_{-1}^*)$$

$$q_2^* = b_2(q_{-2}^*)$$

$$\vdots$$

$$q_n^* = b_2(q_{-n}^*)$$

or, in an equilibrium in which all the firms' outputs are positive,

$$q_{1}^{*} = \frac{1}{2}(\alpha - c - q_{2}^{*} - q_{3}^{*} - \dots - q_{n}^{*})$$

$$q_{2}^{*} = \frac{1}{2}(\alpha - c - q_{1}^{*} - q_{3}^{*} - \dots - q_{n}^{*})$$

$$\vdots$$

$$q_{n}^{*} = \frac{1}{2}(\alpha - c - q_{1}^{*} - q_{2}^{*} - \dots - q_{n-1}^{*}).$$

(c) We can write the equations as

$$0 = \alpha - c - 2q_1^* - q_2^* - \dots - q_{n-1}^* - q_n^*$$

$$0 = \alpha - c - q_1^* - 2q_2^* - \dots - q_{n-1}^* - q_n^*$$

$$\vdots$$

$$0 = \alpha - c - q_1^* - q_2^* - \dots - q_{n-1}^* - 2q_n^*.$$

If we subtract the second equation from the first we obtain $0 = -q_1^* + q_2^*$, or $q_1^* = q_2^*$. Similarly subtracting the third equation from the second we conclude that $q_2^* = q_3^*$, and continuing with all pairs of equations we deduce that $q_1^* = q_2^* = \cdots = q_n^*$. Let the common value of the firms' outputs be q^* . Then each equation is $0 = \alpha - c - (n+1)q^*$, so that $q^* = (\alpha - c)/(n+1)$.

In summary, the game has a unique Nash equilibrium, in which the output of every firm *i* is $(\alpha - c)/(n + 1)$.

- (d) The price at this equilibrium is $\alpha n(\alpha c)/(n + 1)$, or $(\alpha + nc)/(n + 1)$. As *n* increases this price decreases, approaching *c* as *n* increases without bound: $\alpha/(n + 1)$ decreases to 0 and nc/(n + 1) decreases to *c*.
- 2. The game is defined as follows.

Players $\{1, ..., n\}$.

- **Actions** The set of actions of each player *i* is $[0, \infty)$ (the set of possible bids).
- **Payoffs** The payoff of player *i* is $v_i b_i$ if her bid b_i is equal to the highest bid and no player with a lower index submits this bid, and 0 otherwise.

The set of Nash equilibria is the set of profiles *b* of bids with $b_1 \in [v_2, v_1]$, $b_j \leq b_1$ for all $j \neq 1$, and $b_j = b_1$ for some $j \neq 1$.

That all these profiles are Nash equilibria is easy to verify. To see that there are no other equilibria, first we argue that there is no equilibrium in which player 1 does not obtain the object. Suppose that player $i \neq 1$ submits the highest bid b_i and $b_1 < b_i$. If $b_i > v_2$ then player *i*'s payoff is negative, so that he can increase his payoff by bidding 0. If $b_i \leq v_2$ then player 1 can deviate to the bid b_i and win, increasing his payoff.

Now let the winning bid be b^* . We have $b^* \ge v_2$, otherwise player 2 can change his bid to some value in (v_2, b^*) and increase his payoff.

Also $b^* \leq v_1$, otherwise player 1 can reduce her bid and increase her payoff. Finally, $b_j = b^*$ for some $j \neq 1$ otherwise player 1 can increase her payoff by decreasing her bid.

- 3. (a) Any action profile (b_1, \ldots, b_n) with the following properties is such an equilibrium:
 - the winning bid is *b*₁
 - the second-highest bid is at least *v*₂ and is not submitted by player 2
 - the third-highest bid is less than v_2 and at least v_j , where j is the player who submits the second-highest bid.

In such an action profile, player 1 wins and pays less than v_2 . Denote by p^* the price player 1 pays. If the player who submits the second-highest bid changes her bid then either the outcome does not change or, if her bid exceeds b_1 , she wins and pays the price p^* , which is at least her valuation (by the third condition). If any other player deviates either the outcome does not change or, if the deviant's bid exceeds b_1 , the deviant wins and pays a price equal to the original second-highest bid, which is at least v_2 and hence at least equal to the deviant's valuation.

(Note that you are asked only to find *one* equilibrium. An example of an action profile that satisfies the conditions is $(b_1, \ldots, b_n) = (v_1, v_n, v_3, v_2, v_n, \ldots, v_n)$.)

- (b) Consider an action profile in which the winner is player n. Player n's bid b_n must be the highest, and the third-highest bid must be at most v_n , otherwise player n's payoff is negative so that she can do better by bidding 0. But now consider a deviation by the player submitting the second-highest bid. If she bids more than b_n then she wins and the price she pays is at most v_n , so her payoff increases. Hence no such action profile is a Nash equilibrium.
- 4. The best response of player *i* to c_j is the value of c_i that maximizes $v_i\sqrt{c_1+c_2}-c_i$. This function is strictly concave, so that if its maximizer is positive, this maximizer is the solution of the first-order condition

$$\frac{1}{2}v_i(c_1+c_2)^{-1/2}-1=0.$$

The solution is $c_i = \frac{1}{4}(v_i)^2 - c_j$, where j = 2 if i = 1, and j = 1 if i = 2. This solution is positive if $c_j < \frac{1}{4}(v_i)^2$. If $c_j \ge \frac{1}{4}(v_i)^2$ then *i*'s payoff is decreasing in c_i , so that *i*'s best response is 0. In summary, player *i*'s best response to c_i is

$$b_i(c_j) = \begin{cases} 0 & \text{if } c_j \ge \frac{1}{4}(v_i)^2 \\ \frac{1}{4}(v_i)^2 - c_j & \text{if } c_j < \frac{1}{4}(v_i)^2 \end{cases}$$

We deduce (draw a diagram of the best response functions) that for any $v_1 \neq v_2$ the game has a unique Nash equilibrium:

$$\begin{cases} (\frac{1}{4}(v_1)^2, 0) & \text{if } v_1 > v_2 \\ (0, \frac{1}{4}(v_2)^2) & \text{if } v_1 < v_2. \end{cases}$$

5. The game may be specified as follows.

Players
$$N = \{1, ..., n\}.$$

Actions $A_i = [0, 1] \cup \{Out\}$ for all $i \in N$.

Preferences $a \succ_i a'$ if *i* obtains more votes than any other player in *a* and ties with one or more players for the largest number of votes in *a*', or if she ties with one or more players for the largest number of votes in *a* and $a'_i = Out$, or if $a_i = Out$ and she loses in *a*'.

Let *F* be the distribution function of the citizens' favorite positions and let $m = F^{-1}(\frac{1}{2})$ be its median (which is unique, since the density *f* is everywhere positive).

It is easy to check that for n = 2 the game has a unique Nash equilibrium, in which both players choose *m*.

The argument that for n = 3 the game has no Nash equilibrium is as follows.

- There is no equilibrium in which some player becomes a candidate and loses, since that player could instead stay out of the competition. Thus in any equilibrium all candidates must tie for first place.
- There is no equilibrium in which a single player becomes a candidate, since by choosing the same position any of the remaining players ties for first place.
- There is no equilibrium in which two players become candidates, since by the argument for n = 2 in any such equilibrium they must both choose the median position m, in which case the third player can enter close to that position and win outright.

- There is no equilibrium in which all three players become candidates:
 - if all three choose the same position then any one of them can choose a position slightly different and win outright rather than tying for first place;
 - if two choose the same position while the other chooses a different position then the lone candidate can move closer to the other two and win outright.
 - if all three choose different positions then (given that they tie for first place) either of the extreme candidates can move closer to his neighbor and win outright.