Economics 2030

Fall 2018

Martin J. Osborne

Problem Set 4

- 1. Consider the variant of Cournot's duopoly game in which firm 1 doesn't know whether firm 2's unit cost is c_L or c_H , where $c_L < c_H$) and firm 2 knows that firm 1's cost is c. Assume that the inverse demand function is given by $P(Q) = \alpha Q$ for $Q \le \alpha$ and P(Q) = 0 for $Q > \alpha$ and that firm 1's prior belief that firm 2's cost is c_L is θ . For values of c_H and c_L close enough to each other that there is a Nash equilibrium in which all outputs are positive, find this equilibrium. Compare this equilibrium with the Nash equilibrium of the game in which firm 1 knows that firm 2's unit cost is c_L , and with the Nash equilibrium of the game in which firm 1 knows that firm 2's unit cost is c_H .
- 2. Each of two people can contribute either 0 or *c* to the provision of a public good, where 0 < c < 1. If at least one of them contributes, the good is provided. For i = 1, 2, person *i*'s payoff if the good is provided is $(\theta_i)^2 c$ if she contributes and $(\theta_i)^2$ if she does not; her payoff if the good is not provided is 0.

The two people choose simultaneously whether to contribute. Neither person knows the other person's value of θ_i . Each person believes that the other person's value of θ_i is distributed uniformly between 0 and 1.

- (a) Model this situation as a Bayesian game. (Carefully specify the components of the game.)
- (b) Find a Nash equilibrium of the Bayesian game. (*Note that you are asked only to find one equilibrium, not all equilibria.*)
- 3. Two people are involved in a dispute. Person 1 does not know whether person 2 is strong or weak; she assigns probability α to person 2's being strong. Person 2 is fully informed. Each person can either fight or yield. Each person's preferences are represented by the expected value of a Bernoulli payoff function that assigns the payoff of 0 if she yields (regardless of the other person's action) and a payoff of 1 if she

fights and her opponent yields; if both people fight then their payoffs are (-1, 1) if person 2 is strong and (1, -1) if person 2 is weak. Formulate this situation as a Bayesian game and find its Nash equilibria if $\alpha < \frac{1}{2}$ and if $\alpha > \frac{1}{2}$.

- 4. Firm *A* (the "acquirer") is considering taking over firm *T* (the "target"). It does not know firm *T*'s value; it believes that this value, when firm *T* is controlled by its own management, is at least \$0 and at most \$100, and assigns equal probability to each of the 101 dollar values in this range. Firm *T* will be worth 50% more under firm *A*'s management than it is under its own management. Assume that firm *A* submits a bid, a nonnegative number to take over firm *T*. Suppose that firm *A*'s bid is *y*, and firm *T* is worth *x* (under its own management). Then if *T* accepts *A*'s offer, *A*'s payoff is $\frac{3}{2}x y$ and *T*'s payoff is *y*; if *T* rejects *A*'s offer, *A*'s payoff is 0 and *T*'s payoff is *x*. Model this situation as a Bayesian game in which firm *A* chooses how much to offer and firm *T* decides the lowest offer to accept. Find the Nash equilibrium (equilibria?) of this game. Explain why the logic behind the equilibrium is called *adverse selection*.
- 5. Consider the Bayesian game in Figure 1, in which the probabilities $\frac{3}{4}$ and $\frac{1}{4}$ are the players' posterior beliefs.
 - (a) In state γ, does player 1 know player 2's preferences? Does player 2 know player 1's preferences? Does player 2 know that player 1 knows player 2's preferences? Does player 1 know that player 2 knows player 1's preferences?
 - (b) Find the Nash equilibria of the game.
 - (c) Add to the game state δ , in which the players' payoffs are the same as they are in states β and γ and assume that player 1 can distinguish this state from each of the others but player 2 cannot distinguish the state from state γ . Assume that player 2's posterior belief that the state is γ given that she observes that it is either γ or δ is $\frac{3}{4}$. Answer the question in part (a) for state δ and find the Nash equilibria of the modified game.

Figure 1. The Bayesian game in problem 5.