ECO2030: Microeconomic Theory II, module 1 Lecture 4

Martin J. Osborne

Department of Economics University of Toronto

2018.11.1

© 2018 by Martin J. Osborne

Bayesian games

Motivational example

Definition

Nash equilibrium Example: Cournot's model Example: public good provision with uncertain costs Example: exchange game Example: information about knowledge

Purification of mixed strategy equilibria

 Strategic game models situation in which each player knows preferences of other players

Bayesian games

- Strategic game models situation in which each player knows preferences of other players
- In some situations, players are not certain of other players' preferences

Motivational example	Definition	Nash equilibrium	Purification

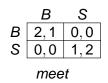
Bayesian games

- Strategic game models situation in which each player knows preferences of other players
- In some situations, players are not certain of other players' preferences
- Model of Bayesian Game allows players to face uncertainty about other players' preferences

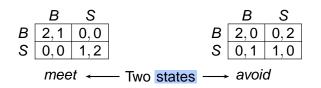
Bayesian games: motivational example Variant of *BoS* with imperfect information

Player 1 doesn't know whether

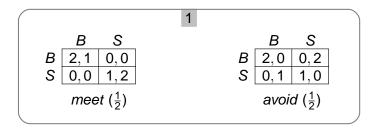
- Player 1 doesn't know whether
 - player 2 prefers to go out with her—player 2 is type m



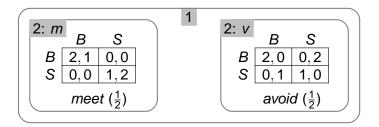
- Player 1 doesn't know whether
 - player 2 prefers to go out with her—player 2 is type m
 - or prefers to avoid her—player 2 is type v



- Player 1 doesn't know whether
 - player 2 prefers to go out with her—player 2 is type m
 - or prefers to avoid her—player 2 is type v
- She thinks probabilities of states are $\frac{1}{2} \frac{1}{2}$

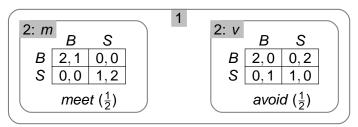


- Player 1 doesn't know whether
 - player 2 prefers to go out with her—player 2 is type m
 - or prefers to avoid her—player 2 is type v
- She thinks probabilities of states are $\frac{1}{2} \frac{1}{2}$
- Player 2 knows player 1's preferences

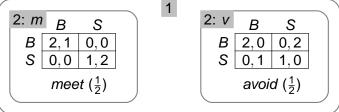


- Player 1 doesn't know whether
 - player 2 prefers to go out with her—player 2 is type m
 - or prefers to avoid her—player 2 is type v
- She thinks probabilities of states are $\frac{1}{2} \frac{1}{2}$
- Player 2 knows player 1's preferences
- Probabilities are involved, so need players' preferences over lotteries, even if interested only in pure strategy equilibria

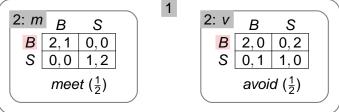
 Bernoulli payoffs



Variant of BoS with imperfect information



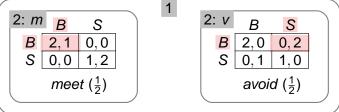
Variant of BoS with imperfect information



An equilibrium

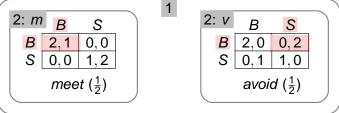
Player 1 chooses B

Variant of BoS with imperfect information



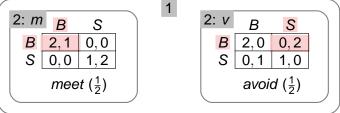
- Player 1 chooses B
- Type m of player 2 chooses B and type v chooses S

Variant of BoS with imperfect information



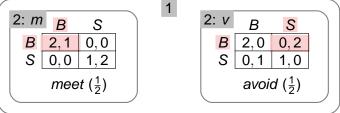
- Player 1 chooses B
- ► Type *m* of player 2 chooses *B* and type *v* chooses *S*
- Argument:

Variant of BoS with imperfect information



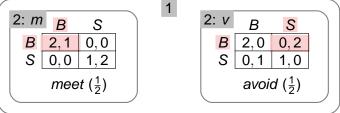
- Player 1 chooses B
- Type m of player 2 chooses B and type v chooses S
- Argument:
 - ▶ P1 chooses $B \Rightarrow$ payoff $\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$; deviates to $S \Rightarrow$ payoff $\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$

Variant of BoS with imperfect information



- Player 1 chooses B
- Type m of player 2 chooses B and type v chooses S
- Argument:
 - ▶ P1 chooses $B \Rightarrow$ payoff $\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$; deviates to $S \Rightarrow$ payoff $\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$
 - Type \overline{m} of player 2: deviate to $S \Rightarrow$ payoff 0

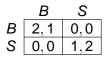
Variant of BoS with imperfect information



- Player 1 chooses B
- Type m of player 2 chooses B and type v chooses S
- Argument:
 - ▶ P1 chooses $B \Rightarrow$ payoff $\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$; deviates to $S \Rightarrow$ payoff $\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$
 - Type m of player 2: deviate to $S \Rightarrow$ payoff 0
 - Type *v* of player 2: deviate to $B \Rightarrow$ payoff 0

Another variant of BoS with imperfect information

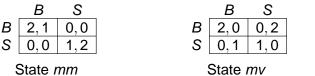
Neither player knows whether other wants to go out with her



State *mm* Each player wants to go out with the other

Another variant of BoS with imperfect information

Neither player knows whether other wants to go out with her



1 wants to go out with 2, but 2 wants to avoid 1

S

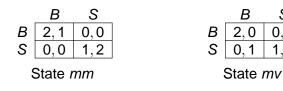
0,2

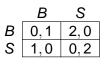
1.0

Bayesian games: motivational example

Another variant of BoS with imperfect information

Neither player knows whether other wants to go out with her



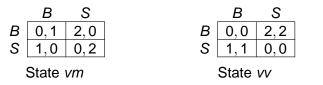


State vm

2 wants to go out with 1, but 1 wants to avoid 2

Another variant of BoS with imperfect information

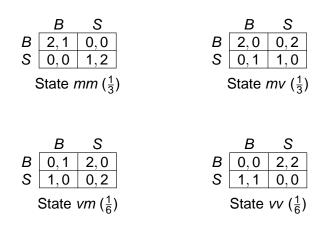
Neither player knows whether other wants to go out with her



Neither player wants to go out with the other

Another variant of BoS with imperfect information

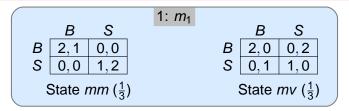
Neither player knows whether other wants to go out with her

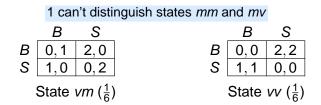


Common prior beliefs over the states

Another variant of BoS with imperfect information

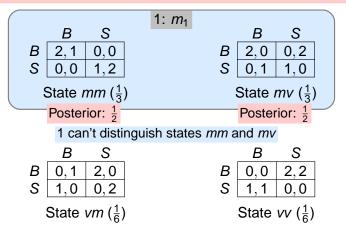
Player 1 receives same **signal**, *m*₁, in states *mm* and *mv* her





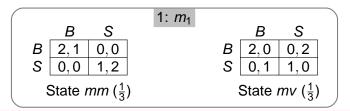
Another variant of BoS with imperfect information

Player 1 receives same **signal**, *m*₁, in states *mm* and *mv* her

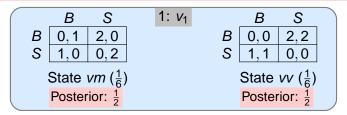


Another variant of BoS with imperfect information

Neither player knows whether other wants to go out with her

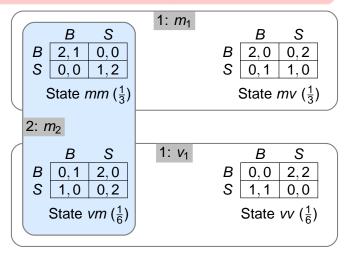


Player 1 receives same **signal**, v_1 , in states vm and vv



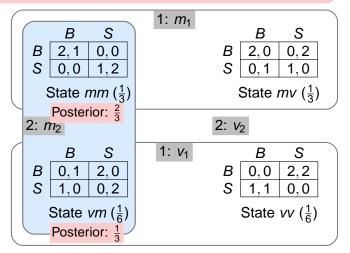
1 can't distinguish states vm and vv

Another variant of *BoS* with imperfect information Player 2 receives same **signal**, m_2 , in states *mm* and *vm* vith her



2 can't distinguish states mm and vm

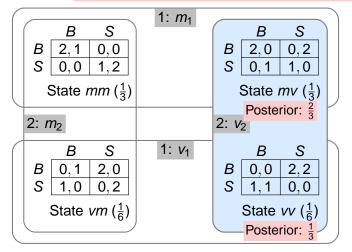
Another variant of *BoS* with imperfect information Player 2 receives same **signal**, m_2 , in states *mm* and *vm* vith her



2 can't distinguish states mm and vm

Another variant of BoS with imperfect information

Neither play Player 2 receives same **signal**, v_2 , in states mv and vv



2 can't distinguish states mv and vv

Bayesian games: motivational example Another variant of *BoS* with imperfect information

 Each player receives signal about state before choosing action

Bayesian games: motivational example Another variant of *BoS* with imperfect information

- Each player receives signal about state before choosing action
- Player i who receives signal t_i is type t_i of player i

Bayesian games: motivational example Another variant of *BoS* with imperfect information

- Each player receives signal about state before choosing action
- Player i who receives signal t_i is type t_i of player i
- Given prior belief and signal, each type of each player calculates posterior belief

Elements new relative to strategic game are indicated in red

A Bayesian game consists of

Elements new relative to strategic game are indicated in red

- A Bayesian game consists of
 - a finite set N (players)

Elements new relative to strategic game are indicated in red

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)

Elements new relative to strategic game are indicated in red

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - ▶ a set A_i (actions)

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - a set A_i (actions)
 - a set *T_i* (of *signals* that *i* may receive) and a function *τ_i* : Ω → *T_i* that associates a signal with each state (*i*'s signal function)

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - a set A_i (actions)
 - a set *T_i* (of *signals* that *i* may receive) and a function *τ_i* : Ω → *T_i* that associates a signal with each state (*i*'s signal function)
 - a probability measure p_i on Ω (*i*'s prior belief) with $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in T_i$

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - a set A_i (actions)
 - a set *T_i* (of *signals* that *i* may receive) and a function *τ_i* : Ω → *T_i* that associates a signal with each state (*i*'s signal function)
 - a probability measure p_i on Ω (*i*'s prior belief) with $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in T_i$
 - a preference relation over probability distributions over $A \times \Omega$ (represented by the expected value of a Bernoulli payoff function).

Elements new relative to strategic game are indicated in red

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - a set A_i (actions)
 - a set *T_i* (of *signals* that *i* may receive) and a function *τ_i* : Ω → *T_i* that associates a signal with each state (*i*'s signal function)
 - a probability measure p_i on Ω (*i*'s prior belief) with $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in T_i$
 - a preference relation over probability distributions over A × Ω (represented by the expected value of a Bernoulli payoff function).

Notes

• *i* has no information: $\tau_i(\omega) = \tau_i(\omega')$ for all ω, ω'

Elements new relative to strategic game are indicated in red

- A Bayesian game consists of
 - a finite set N (players)
 - a set Ω (states)
 - for each player $i \in N$
 - a set A_i (actions)
 - a set *T_i* (of *signals* that *i* may receive) and a function *τ_i* : Ω → *T_i* that associates a signal with each state (*i*'s signal function)
 - a probability measure p_i on Ω (*i*'s prior belief) with $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in T_i$
 - a preference relation over probability distributions over A × Ω (represented by the expected value of a Bernoulli payoff function).

Notes

- *i* has no information: $\tau_i(\omega) = \tau_i(\omega')$ for all ω, ω'
- *i* has perfect information: $\tau_i(\omega) \neq \tau_i(\omega')$ if $\omega \neq \omega'$

Motivational example	Definition	Nash equilibrium	Purification
First example			

Players States Actions Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification
First example			

- Players $N = \{1, 2\}$ (the pair of people) States Actions Signals
- **Beliefs**
- Payoffs

Motivational example	Definition	Nash equilibrium	Purification
First example			

Players $N = \{1, 2\}$ (the pair of people) States $\Omega = \{meet, avoid\}$ Actions Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification	
First example)			

```
Players N = \{1, 2\} (the pair of people)
States \Omega = \{meet, avoid\}
Actions A_1 = A_2 = \{B, S\}
Signals
```

Beliefs

 Motivational example
 Definition
 Nash equilibrium
 Purification

 First example
 Players $N = \{1, 2\}$ (the pair of people)
 States $\Omega = \{meet, avoid\}$

 Actions $A_1 = A_2 = \{B, S\}$

Signals $T_1 = \{z\}$ and $\tau_1(meet) = \tau_1(avoid) = z$ $T_2 = \{m, v\}$ and $\tau_2(meet) = m$ and $\tau_2(avoid) = v$

Beliefs

Motivational example Definition Nash equilibrium Purification First example Players $N = \{1, 2\}$ (the pair of people) States $\Omega = \{meet, avoid\}$ Actions $A_1 = A_2 = \{B, S\}$ Signals $T_1 = \{z\}$ and $\tau_1(meet) = \tau_1(avoid) = z$ $T_2 = \{m, v\}$ and $\tau_2(meet) = m$ and $\tau_2(avoid) = v$ Beliefs $p_1(meet) = p_2(meet) = \frac{1}{2}$, $p_1(avoid) = p_2(avoid) = \frac{1}{2}$ Payoffs

Definition Purification Motivational example Nash equilibrium First example Players $N = \{1, 2\}$ (the pair of people) States $\Omega = \{meet, avoid\}$ Actions $A_1 = A_2 = \{B, S\}$ Signals $T_1 = \{z\}$ and $\tau_1(meet) = \tau_1(avoid) = z$ $T_2 = \{m, v\}$ and $\tau_2(meet) = m$ and $\tau_2(avoid) = v$ Beliefs $p_1(meet) = p_2(meet) = \frac{1}{2}$, $p_1(avoid) = p_2(avoid) = \frac{1}{2}$

Payoffs The payoffs $u_i(a, meet)$ of each player *i* for all possible action pairs are given in the left panel of the figure on the earlier slide and the payoffs $u_i(a, avoid)$ are given in the right panel

Motivational example	Definition	Nash equilibrium	Purification	
Second examp	ble			

Players

States Actions Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification
Second examp	ole		

Players $N = \{1, 2\}$ (the pair of people) States Actions Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification	
Second exam	ple			
•	$V = \{1,2\}$ (the beople)	e pair of		

States $\Omega = \{mm, mv, vm, vv\}$

Actions

Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification	
Second exa	mple			
Players	$N = \{1, 2\}$ (th people)	e pair of		
States	$\Omega = \{mm, mv\}$, vm , vv }		

Actions $A_1 = A_2 = \{B, S\}$

Signals

Beliefs

Motivational example Definition Nash equilibrium Purification
Second example
Players
$$N = \{1, 2\}$$
 (the pair of people)
States $\Omega = \{mm, mv, vm, vv\}$
Actions $A_1 = A_2 = \{B, S\}$
Signals $T_1 = \{m_1, v_1\}, \tau_1(mm) = \tau_1(mv) = m_1$, and $\tau_1(vm) = \tau_1(vv) = v_1$
 $T_2 = \{m_2, v_2\}, \tau_2(mm) = \tau_2(vm) = m_2$, and $\tau_2(mv) = \tau_2(vv) = v_2$

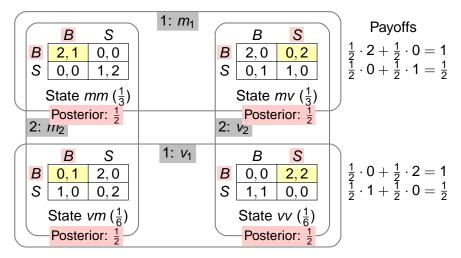
Beliefs

Definition Nash equilibrium Purification Motivational example Second example Players $N = \{1, 2\}$ (the pair of (elgoag States $\Omega = \{mm, mv, vm, vv\}$ Actions $A_1 = A_2 = \{B, S\}$ Signals $T_1 = \{m_1, v_1\}, \tau_1(mm) = \tau_1(mv) = m_1$, and $\tau_1(Vm) = \tau_1(VV) = V_1$ $T_2 = \{m_2, v_2\}, \tau_2(mm) = \tau_2(vm) = m_2$, and $\tau_2(mv) = \tau_2(vv) = v_2$ Beliefs $p_i(mm) = p_i(mv) = \frac{1}{3}$ and $p_i(vm) = p_i(vv) = \frac{1}{4}$ for i = 1.2Payoffs

Definition Nash equilibrium Purification Motivational example Second example Players $N = \{1, 2\}$ (the pair of (elgoag States $\Omega = \{mm, mv, vm, vv\}$ Actions $A_1 = A_2 = \{B, S\}$ Signals $T_1 = \{m_1, v_1\}, \tau_1(mm) = \tau_1(mv) = m_1$, and $\tau_1(Vm) = \tau_1(VV) = V_1$ $T_2 = \{m_2, v_2\}, \tau_2(mm) = \tau_2(vm) = m_2$, and $\tau_2(mv) = \tau_2(vv) = v_2$ Beliefs $p_i(mm) = p_i(mv) = \frac{1}{3}$ and $p_i(vm) = p_i(vv) = \frac{1}{6}$ for i = 1.2Payoffs The payoffs $u_i(a, \omega)$ of each player *i* for all possible action pairs and states are given on the earlier

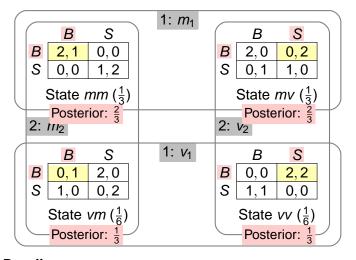
slide

Second example: Nash equilibria



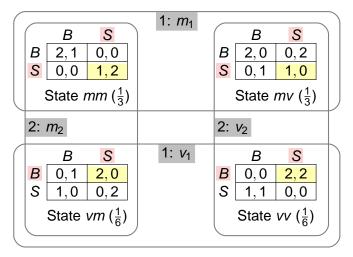
Nash equilibrium: ((B, B), (B, S)) (analysis for player 1)

Second example: Nash equilibria



Payoffs: 1 0 0 2 Nash equilibrium: ((B, B), (B, S)) (analysis for player 2)

Second example: Nash equilibria



Another Nash equilibrium: ((S, B), (S, S))

Motivational example	Definition	Nash equilibrium	Purification

Nash equilibrium

Nash equilibrium

i's prior & signal

Nash equilibrium

i's prior & signal ↓ posterior belief about state Motivational example

Definition

Nash equilibrium

Purification

Nash equilibrium

i's prior & signal ↓ posterior belief about state action of each type of every other player

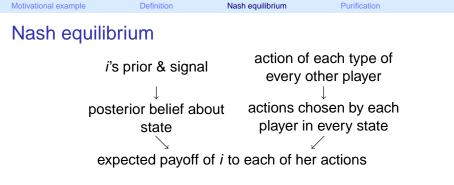
Motivational e	xamp	le
----------------	------	----

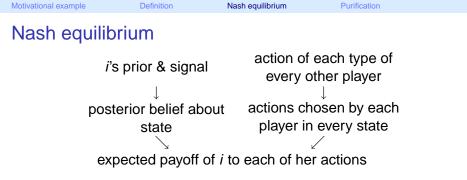
Nash equilibrium

Purification

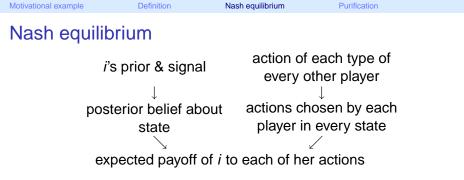
Nash equilibrium

i's prior & signal ↓ posterior belief about state action of each type of every other player ↓ actions chosen by each player in every state



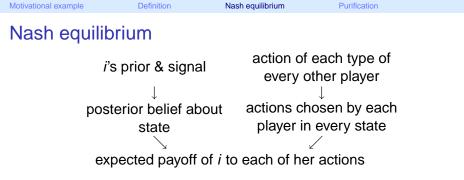


A Nash equilibrium of a Bayesian game is a collection of actions $a(i, t_i)$, one for each type t_i of each player *i*



A Nash equilibrium of a Bayesian game is a collection of actions $a(i, t_i)$, one for each type t_i of each player *i*, such that, for each type t_i of each player *i*,

 $a(i, t_i)$ maximizes (i, t_i) 's expected payoff



A Nash equilibrium of a Bayesian game is a collection of actions $a(i, t_i)$, one for each type t_i of each player *i*, such that, for each type t_i of each player *i*,

 $a(i, t_i)$ maximizes (i, t_i) 's expected payoff

given the actions $a(j, t_j)$ of every type t_j of every other player j and (i, t_j) 's posterior belief over the set of states.

Variant of Cournot's duoploy game in which firm 1 does not know firm 2's unit cost

Both firms produce the good at constant unit cost

Variant of Cournot's duoploy game in which firm 1 does not know firm 2's unit cost

- Both firms produce the good at constant unit cost
- Both firms know that firm 1's unit cost is c

Variant of Cournot's duoploy game in which firm 1 does not know firm 2's unit cost

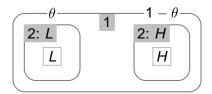
- Both firms produce the good at constant unit cost
- Both firms know that firm 1's unit cost is c
- Firm 2 knows its own unit cost

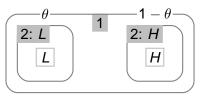
Variant of Cournot's duoploy game in which firm 1 does not know firm 2's unit cost

- Both firms produce the good at constant unit cost
- Both firms know that firm 1's unit cost is c
- Firm 2 knows its own unit cost
- Firm 1 believes that firm 2's unit cost is c_L with probability θ and c_H with probability 1 − θ, where 0 < θ < 1 and c_L < c_H

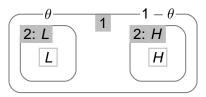
Variant of Cournot's duoploy game in which firm 1 does not know firm 2's unit cost

- Both firms produce the good at constant unit cost
- Both firms know that firm 1's unit cost is c
- Firm 2 knows its own unit cost
- Firm 1 believes that firm 2's unit cost is c_L with probability θ and c_H with probability 1 − θ, where 0 < θ < 1 and c_L < c_H

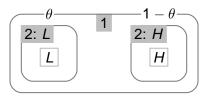




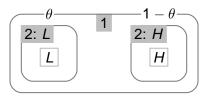
Players States Actions Signals



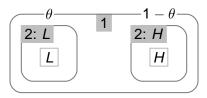
Players $N = \{1, 2\}$ (the firms) States Actions Signals Beliefs



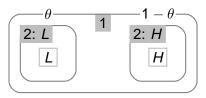
Players
$$N = \{1, 2\}$$
 (the firms)
States $\Omega = \{L, H\}$
Actions
Signals



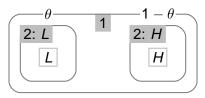
Players $N = \{1, 2\}$ (the firms) States $\Omega = \{L, H\}$ Actions $A_1 = A_2 = \mathbb{R}_+$ Signals



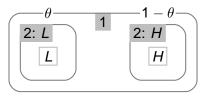
Players $N = \{1, 2\}$ (the firms) States $\Omega = \{L, H\}$ Actions $A_1 = A_2 = \mathbb{R}_+$ Signals $T_1 = \{z\}, \tau_1(L) = \tau_1(H) = z$



Players
$$N = \{1, 2\}$$
 (the firms)
States $\Omega = \{L, H\}$
Actions $A_1 = A_2 = \mathbb{R}_+$
Signals $T_1 = \{Z\}, \tau_1(L) = \tau_1(H) = Z$
 $T_2 = \{\ell, h\}, \tau_2(L) = \ell$, and $\tau_2(H) = h$
Beliefs



Players $N = \{1, 2\}$ (the firms) States $\Omega = \{L, H\}$ Actions $A_1 = A_2 = \mathbb{R}_+$ Signals $T_1 = \{z\}, \tau_1(L) = \tau_1(H) = z$ $T_2 = \{\ell, h\}, \tau_2(L) = \ell$, and $\tau_2(H) = h$ Beliefs $p_i(L) = \theta, p_i(H) = 1 - \theta, i = 1, 2$ Payoffs



Players $N = \{1, 2\}$ (the firms) States $\Omega = \{L, H\}$ Actions $A_1 = A_2 = \mathbb{R}_+$ Signals $T_1 = \{z\}, \tau_1(L) = \tau_1(H) = z$ $T_2 = \{\ell, h\}, \tau_2(L) = \ell$, and $\tau_2(H) = h$ Beliefs $p_i(L) = \theta, p_i(H) = 1 - \theta, i = 1, 2$ Payoffs For $\omega \in \Omega$ we have

$$u_1((q_1, q_2), \omega) = q_1 P(q_1 + q_2) - q_1 c$$

$$u_2((q_1, q_2), \omega) = q_2 P(q_1 + q_2) - q_2 c_\omega$$

Nash equilibrium: $(q_1^*, (q_L^*, q_H^*))$ such that

Nash equilibrium: $(q_1^*, (q_L^*, q_H^*))$ such that

 q_1^* maximizes $\theta q_1 P(q_1 + q_L^*) + (1 - \theta)q_1 P(q_1 + q_H^*) - cq_1$

and

Cournot's duopoly game with imperfect information Nash equilibrium: $(q_1^*, (q_I^*, q_H^*))$ such that

 q_1^* maximizes $\theta q_1 P(q_1 + q_L^*) + (1 - \theta)q_1 P(q_1 + q_H^*) - cq_1$

and

$$q_L^*$$
 maximizes $q_L P(q_1^* + q_L) - q_L c_L$

Cournot's duopoly game with imperfect information Nash equilibrium: $(q_1^*, (q_L^*, q_H^*))$ such that

 q_1^* maximizes $\theta q_1 P(q_1 + q_L^*) + (1 - \theta)q_1 P(q_1 + q_H^*) - cq_1$

and

$$q_L^*$$
 maximizes $q_L P(q_1^* + q_L) - q_L c_L$

and

$$q_H^*$$
 maximizes $q_H P(q_1^* + q_H) - q_H c_H$

Cournot's duopoly game with imperfect information Nash equilibrium: $(q_1^*, (q_I^*, q_H^*))$ such that

 q_1^* maximizes $\theta q_1 P(q_1 + q_L^*) + (1 - \theta)q_1 P(q_1 + q_H^*) - cq_1$

and

$$q_L^*$$
 maximizes $q_L P(q_1^* + q_L) - q_L c_L$

and

$$q_{H}^{*}$$
 maximizes $q_{H}P(q_{1}^{*}+q_{H})-q_{H}c_{H}$

Compute best response functions and solve

$$egin{aligned} q_1^* &= b_1(q_L^*, q_H^*) \ q_L^* &= b_L(q_1^*) \ q_H^* &= b_H(q_1^*) \end{aligned}$$

for Nash equilibrium $(q_1^*, (q_L^*, q_H^*))$

 n people simultaneously decide whether to contribute to the provision of a public good

- n people simultaneously decide whether to contribute to the provision of a public good
- The good is provided if and only if at least one person contributes

- n people simultaneously decide whether to contribute to the provision of a public good
- The good is provided if and only if at least one person contributes
- Person i's payoff:
 - if *i* contributes
 - if *i* does not contribute but good is provided
 if *i* does not contribute and good is not provided

- n people simultaneously decide whether to contribute to the provision of a public good
- The good is provided if and only if at least one person contributes
- Person i's payoff:

 - $\begin{cases} 1 c_i & \text{if } i \text{ contributes} \\ 1 & \text{if } i \text{ does not contribute but good is provided} \\ 0 & \text{if } i \text{ does not contribute and good is not provided} \end{cases}$
- Each person i knows the value of c_i but not the values of c_i for $j \neq i$

- n people simultaneously decide whether to contribute to the provision of a public good
- The good is provided if and only if at least one person contributes
- Person i's payoff:

 - $\begin{cases} 1 c_i & \text{if } i \text{ contributes} \\ 1 & \text{if } i \text{ does not contribute but good is provided} \\ 0 & \text{if } i \text{ does not contribute and good is not provided} \end{cases}$
- Each person i knows the value of c_i but not the values of c_i for $j \neq i$
- For each $j \neq i$, person *i* believes that c_i is distributed independently of c_k for $k \neq j$, according to the continuous cumulative distribution function *G* on \mathbb{R}_+ with G(0) = 0

Motivational example	Definition	Nash equilibrium	Purification
Public good p Bayesian game Players	rovision v	vith uncertain c	osts
States			
Actions Signals			

Beliefs

Motivational example	Definition	Nash equilibrium	Purification
Public good p Bayesian game	orovision	with uncertain	costs
Players States	{1,, <i>n</i> }		

Actions Signals

Beliefs

Motivational example	Definition	Nash equilibrium	Purification	
Public good provision with uncertain costs Bayesian game				
Players	{1,, <i>n</i> }			
States	\mathbb{R}^{n}_{+} (the set o numbers)	f profiles (<i>c</i> ₁ ,	., <i>c_n</i>) of nonnegative	
Actions				
Signals				

Beliefs

Motivational example	Definition	Nash equilibrium	Purification
Public good	provision v	vith uncert	ain costs
Bayesian game			
Players	{1,, <i>n</i> }		
States	\mathbb{R}^n_+ (the set on numbers)	f profiles (<i>c</i> ₁ , .	\ldots, c_n) of nonnegative
Actions	$\{0,1\}$ for eac	h player	
Signals			

Beliefs

Public good provision with uncertain costs Bayesian game

Players {1,...,*n*}

- States \mathbb{R}^{n}_{+} (the set of profiles (c_{1}, \ldots, c_{n}) of nonnegative numbers)
- Actions $\{0,1\}$ for each player
- Signals Set of signals for each player *i* is \mathbb{R}_+ (the set of possible values of c_i); player *i*'s signal function is given by $\tau_i(c) = c_i$ for each $c \in \mathbb{R}^n_+$

Beliefs

Public good provision with uncertain costs Bayesian game

Players {1,...,*n*}

- States \mathbb{R}^{n}_{+} (the set of profiles (c_1, \ldots, c_n) of nonnegative numbers)
- Actions $\{0,1\}$ for each player
- Signals Set of signals for each player *i* is \mathbb{R}_+ (the set of possible values of c_i); player *i*'s signal function is given by $\tau_i(c) = c_i$ for each $c \in \mathbb{R}^n_+$
- Beliefs Each player believes that the probability that $c_i \leq \overline{c}_i$ for each *i* is $\prod_{i=1}^n G(c_i)$

Public good provision with uncertain costs Bayesian game

- Players {1,...,*n*}
- States \mathbb{R}^{n}_{+} (the set of profiles (c_1, \ldots, c_n) of nonnegative numbers)
- Actions $\{0,1\}$ for each player
- Signals Set of signals for each player *i* is \mathbb{R}_+ (the set of possible values of c_i); player *i*'s signal function is given by $\tau_i(c) = c_i$ for each $c \in \mathbb{R}^n_+$
- Beliefs Each player believes that the probability that $c_i \leq \overline{c}_i$ for each *i* is $\prod_{i=1}^n G(c_i)$

Payoffs Payoff of player *i* for the action profile *s* in state *c* is

$$\begin{cases} 1 - c_i & \text{if } s_i = 1 \\ 1 & \text{if } s_i = 0 \text{ and } s_j = 1 \text{ for some } j \neq i \\ 0 & \text{if } s_j = 0 \text{ for all } j \end{cases}$$

Nash equilibrium

 Seems reasonable that game has equilibrium in which each player contributes if and only if her cost is low

- Seems reasonable that game has equilibrium in which each player contributes if and only if her cost is low
- ► Check for (symmetric pure) equilibrium in which each player *j* contributes if and only if c_j ≤ c̄, for some number c̄

- Seems reasonable that game has equilibrium in which each player contributes if and only if her cost is low
- ► Check for (symmetric pure) equilibrium in which each player *j* contributes if and only if c_j ≤ c̄, for some number c̄
- Suppose every player $j \neq i$ uses this strategy

Nash equilibrium

- Seems reasonable that game has equilibrium in which each player contributes if and only if her cost is low
- ► Check for (symmetric pure) equilibrium in which each player *j* contributes if and only if c_j ≤ c̄, for some number c̄
- Suppose every player $j \neq i$ uses this strategy
- ► Then probability that at least one of these players contributes is 1 (1 G(c))ⁿ⁻¹

- Seems reasonable that game has equilibrium in which each player contributes if and only if her cost is low
- ► Check for (symmetric pure) equilibrium in which each player *j* contributes if and only if c_j ≤ c̄, for some number c̄
- Suppose every player $j \neq i$ uses this strategy
- ► Then probability that at least one of these players contributes is 1 (1 G(c))ⁿ⁻¹
- So player i's payoff

$$\begin{cases} 1 - c_i & \text{if she contributes} \\ 1 - (1 - G(\overline{c}))^{n-1} & \text{is she does not contribute} \end{cases}$$

Player i's payoff:

$$\begin{cases} 1-c_i\\ 1-(1-G(\overline{c}))^{n-1} \end{cases}$$

if she contributes

if she does not contribute

Player i's payoff:

$$\begin{cases} 1 - c_i & \text{if she contributes} \\ 1 - (1 - G(\overline{c}))^{n-1} & \text{if she does not contribute} \end{cases}$$

For strategy profile to be equilibrium, we want contribution by *i* to be optimal if c_i ≤ c̄ and non-contribution to be optimal if c_i ≥ c̄

Player i's payoff:

 $\begin{cases} 1 - c_i & \text{if she contributes} \\ 1 - (1 - G(\overline{c}))^{n-1} & \text{if she does not contribute} \end{cases}$

- For strategy profile to be equilibrium, we want contribution by *i* to be optimal if c_i ≤ c̄ and non-contribution to be optimal if c_i ≥ c̄
- That is, want

$$\begin{cases} 1-c_i \geq 1-(1-G(\overline{c}))^{n-1} & \text{if } c_i \leq \overline{c} \\ 1-c_i \leq 1-(1-G(\overline{c}))^{n-1} & \text{if } c_i \geq \overline{c} \end{cases}$$

Player i's payoff:

 $\begin{cases} 1 - c_i & \text{if she contributes} \\ 1 - (1 - G(\overline{c}))^{n-1} & \text{if she does not contribute} \end{cases}$

- For strategy profile to be equilibrium, we want contribution by *i* to be optimal if c_i ≤ c̄ and non-contribution to be optimal if c_i ≥ c̄
- That is, want

$$\begin{cases} 1-c_i \geq 1-(1-G(\overline{c}))^{n-1} & \text{if } c_i \leq \overline{c} \\ 1-c_i \leq 1-(1-G(\overline{c}))^{n-1} & \text{if } c_i \geq \overline{c} \end{cases}$$

Conditions are satisfied if and only if

$$1-\overline{c}=1-(1-G(\overline{c}))^{n-1}$$

or

$$\overline{c} = (1 - G(\overline{c}))^{n-1}$$

Nash equilibrium

• That is, if strategy of every player $j \neq i$ satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where $\overline{c} = (1 - G(\overline{c}))^{n-1}$, then it is optimal for player *i* to use strategy satisfying these conditions

• That is, if strategy of every player $j \neq i$ satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where $\overline{c} = (1 - G(\overline{c}))^{n-1}$, then it is optimal for player *i* to use strategy satisfying these conditions

 Hence strategy profile in which each player uses such a strategy is Nash equilibrium

• That is, if strategy of every player $j \neq i$ satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where $\overline{c} = (1 - G(\overline{c}))^{n-1}$, then it is optimal for player *i* to use strategy satisfying these conditions

- Hence strategy profile in which each player uses such a strategy is Nash equilibrium
- Does such a value of \overline{c} exist?

• That is, if strategy of every player $j \neq i$ satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where $\overline{c} = (1 - G(\overline{c}))^{n-1}$, then it is optimal for player *i* to use strategy satisfying these conditions

- Hence strategy profile in which each player uses such a strategy is Nash equilibrium
- Does such a value of \overline{c} exist?
- Function $\overline{c} (1 G(\overline{c}))^{n-1}$ is continuous and has values

$$\begin{cases} -1 & \text{for } \overline{c} = 0 \\ >0 & \text{for } \overline{c} \text{ large enough} \end{cases}$$

• That is, if strategy of every player $j \neq i$ satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where $\overline{c} = (1 - G(\overline{c}))^{n-1}$, then it is optimal for player *i* to use strategy satisfying these conditions

- Hence strategy profile in which each player uses such a strategy is Nash equilibrium
- Does such a value of \overline{c} exist?
- Function $\overline{c} (1 G(\overline{c}))^{n-1}$ is continuous and has values

$$\begin{cases} -1 & \text{for } \overline{c} = 0 \\ > 0 & \text{for } \overline{c} \text{ large enough} \end{cases}$$

• Thus value of \overline{c} exists for which $\overline{c} = (1 - G(\overline{c}))^{n-1}$

Bayesian game has (pure strategy) Nash equilibrium in which the strategy of every player *i* satisfies

 $\begin{cases} \text{contribute} & \text{if } c_i < \overline{c} \\ \text{don't contribute} & \text{if } c_i > \overline{c} \end{cases}$

where

$$\overline{c} = (1 - G(\overline{c}))^{n-1}$$

Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive
- Each player knows sees her ticket, but not any other player's ticket

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive
- Each player knows sees her ticket, but not any other player's ticket
- Each player believes that the prizes are drawn independently from the same distribution *F* (which assigns positive probability to each possible prize)

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive
- Each player knows sees her ticket, but not any other player's ticket
- Each player believes that the prizes are drawn independently from the same distribution *F* (which assigns positive probability to each possible prize)
- Each player is asked independently and simultaneously whether she wants to exchange her prize for the other player's prize

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive
- Each player knows sees her ticket, but not any other player's ticket
- Each player believes that the prizes are drawn independently from the same distribution *F* (which assigns positive probability to each possible prize)
- Each player is asked independently and simultaneously whether she wants to exchange her prize for the other player's prize
- If both players agree then the prizes are exchanged; otherwise each player receives her own prize

- Each of two players receives a ticket on which there is a number in some finite subset V of the interval [0, 1]
- The number on a player's ticket is the size of a prize that she may receive
- Each player knows sees her ticket, but not any other player's ticket
- Each player believes that the prizes are drawn independently from the same distribution *F* (which assigns positive probability to each possible prize)
- Each player is asked independently and simultaneously whether she wants to exchange her prize for the other player's prize
- If both players agree then the prizes are exchanged; otherwise each player receives her own prize
- Each player's objective is to maximize her expected payoff

Motivational example	Definition	Nash equilibrium	Purification
Exchange ga Bayesian game	ame		
Players			
States			
Actions			
Signals			
Beliefs			
Payoffs			

Motivational example	Definition	Nash equilibrium	Purification
Exchange ga Bayesian game	ame		
Players	{1,2}		
States			
Actions			
Signals			
Beliefs			
Payoffs			

Motivational example	Definition	Nash equilibrium	Purification
Exchange ga Bayesian game	ame		
Players States Actions Signals		pairs of ticket value	≥S)
Beliefs			

Payoffs

Motivational example	Definition	Nash equilibrium	Purification	
Exchange ga Bayesian game	ime			
Players	{1.2}			

Players $\{1,2\}$ States $V \times V$ (set of pairs of ticket values) Actions {exchange, don't exchange} for each player Signals

Beliefs

Payoffs

Motivational exampleDefinitionNash equilibriumPurificationExchange gameBayesian gamePlayers $\{1,2\}$ States $V \times V$ (set of pairs of ticket values)Actions $\{exchange, don't exchange\}$ for each playerSignals Set of signals for each player i is V; player i's

signal function is $\tau_i(s_1, s_2) = s_i$

Payoffs

Beliefs

Motivational example	Definition	Nash equilibrium	Purification
Exchange ga Bayesian game	ame		
Players	{1,2}		
States	$V \times V$ (set	of pairs of ticket va	alues)
Actions	{exchange,	don't exchange} f	or each player

- Signals Set of signals for each player *i* is *V*; player *i*'s signal function is $\tau_i(s_1, s_2) = s_i$
- Beliefs Each player's belief is that s_1 and s_2 are two independent draws from *F*

Payoffs

Motivational example	Definition	Nash equilibrium	Purification	
Exchange ga Bayesian game	ame			

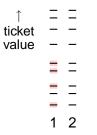
- Players {1,2}
- States $V \times V$ (set of pairs of ticket values)
- Actions {exchange, don't exchange} for each player
- Signals Set of signals for each player *i* is *V*; player *i*'s signal function is $\tau_i(s_1, s_2) = s_i$
- Beliefs Each player's belief is that s_1 and s_2 are two independent draws from *F*
- Payoffs Payoff of player *i* for the action profile *s* in state *c* is

$$u_i((a_1, a_2), \omega) = egin{cases} \omega_j & ext{if } a_1 = a_2 = Exchange \ \omega_i & ext{otherwise} \end{cases}$$

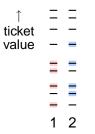
Nash equilibrium

*	_	_	
	_	_	
ticket	—	-	
value	-	-	
	_	_	
	-	_	
	_	_	
	_	_	
	_	—	
	1	2	

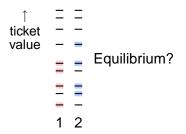
Nash equilibrium



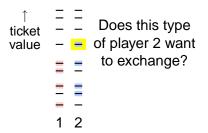
Nash equilibrium



Nash equilibrium



Nash equilibrium



Nash equilibrium

↑ ticket	ΞΞ	
value		Does this type
	= =	of player 2 want
	= =	to exchange?
	12	

Nash equilibrium

In a Nash equilibrium, which tickets are exchanged?

 $\uparrow = =$ ticket - value - - $M_1 = = M_2$ = $\underbrace{X = -$ 1 = 2

Let <u>x</u> be smallest possible prize and let M_i be highest type of player *i* that chooses *Exchange*

Nash equilibrium

In a Nash equilibrium, which tickets are exchanged?

 $\uparrow = =$ ticket - value - - $M_1 = = M_2$ = $\underbrace{X}_{-} = -$ 1 = 2

- Let <u>x</u> be smallest possible prize and let M_i be highest type of player *i* that chooses *Exchange*
- If M_i ≥ M_j and M_i > x then type M_i of player i does not optimally choose Exchange, since expected value of prizes of types of player j that choose Exchange is less than M_i

Nash equilibrium

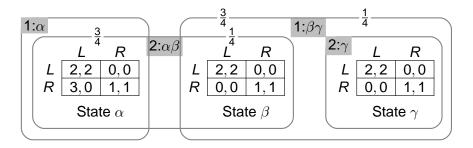
In a Nash equilibrium, which tickets are exchanged?

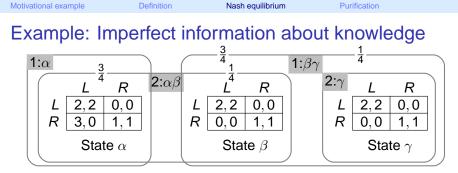
 $\uparrow = = =$ ticket - value - - $\equiv =$ $\Xi =$ $\underline{x} = =$ 1 2

- Let <u>x</u> be smallest possible prize and let M_i be highest type of player *i* that chooses *Exchange*
- If M_i ≥ M_j and M_i > x then type M_i of player i does not optimally choose Exchange, since expected value of prizes of types of player j that choose Exchange is less than M_i
- ► Thus in any Nash equilibrium M_i = M_j = <u>x</u>: the only prizes that may be exchanged are the smallest

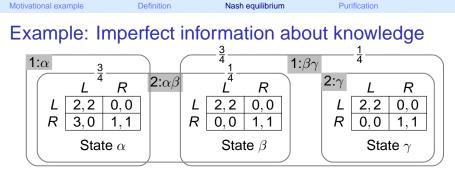
Example: Imperfect information about knowledge

Bayesian game may be used to model not only situations in which players are uncertain about each others' preferences, but also situations in which they are uncertain about each others' *knowledge*.

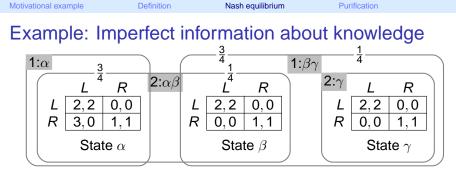




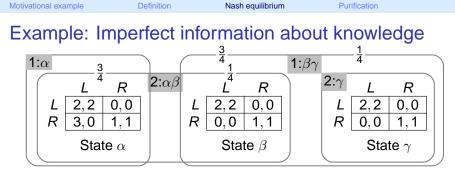
Player 2's preferences same in all three states; player 1's preferences same in states β and γ.



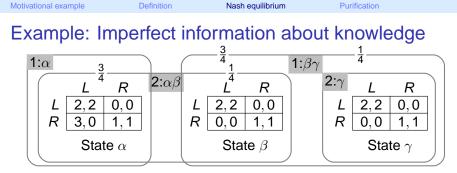
- Player 2's preferences same in all three states; player 1's preferences same in states β and γ.
- In state γ :



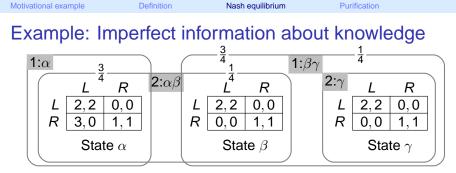
- Player 2's preferences same in all three states; player 1's preferences same in states β and γ.
- In state γ :
 - 1 knows 2's preferences (which are same in all states)



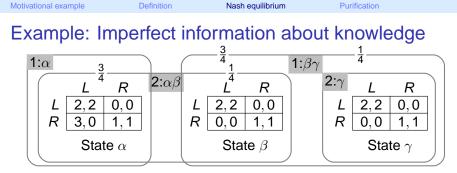
- Player 2's preferences same in all three states; player 1's preferences same in states β and γ.
- In state γ :
 - 1 knows 2's preferences (which are same in all states)
 - 2 knows 1's preferences



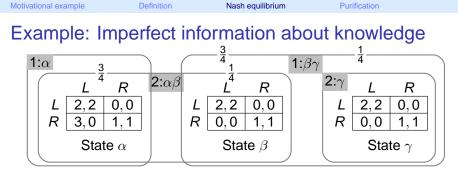
- Player 2's preferences same in all three states; player 1's preferences same in states β and γ.
- In state γ :
 - 1 knows 2's preferences (which are same in all states)
 - 2 knows 1's preferences
 - 2 knows that 1 knows 2's preferences (2 knows state is γ, and hence knows 1 knows state is either β or γ)



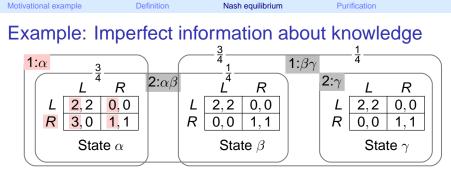
- Player 2's preferences same in all three states; player 1's preferences same in states β and γ.
- In state γ :
 - 1 knows 2's preferences (which are same in all states)
 - 2 knows 1's preferences
 - 2 knows that 1 knows 2's preferences (2 knows state is γ, and hence knows 1 knows state is either β or γ)
 - 1 does not know that 2 knows 1's preferences: 1 knows only that state is either β or γ, and in state β player 2 does not know whether state is α or β, and hence does not know 1's preferences (because 1's preferences in α and β differ)

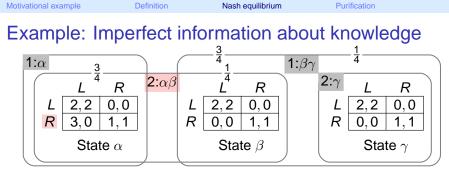


- This imperfection in player 1's knowledge of player 2's information significantly affects the equilibria of the game:
 - If information were perfect in state γ, then both (L, L) and (R, R) would be Nash equilibria.

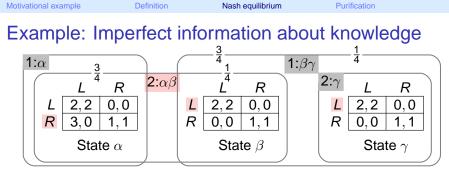


- This imperfection in player 1's knowledge of player 2's information significantly affects the equilibria of the game:
 - If information were perfect in state γ, then both (L, L) and (R, R) would be Nash equilibria.
 - However, whole game has unique Nash equilibrium, in which outcome in state γ is (R, R). The incentives faced by player 1 in state α "infect" the remainder of the game.

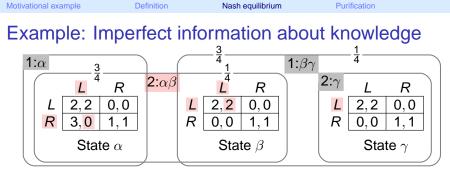




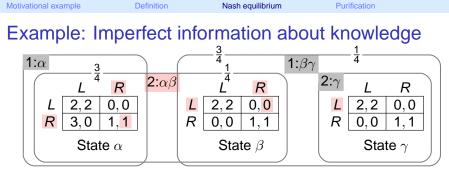
- In any Nash equilibrium, action of type α of player 1 is R, because R strictly dominates L
- Consider type $\alpha\beta$ of player 2:



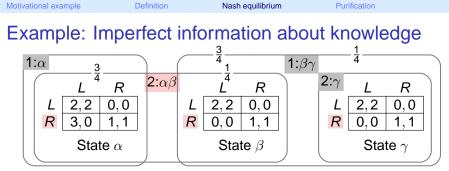
- In any Nash equilibrium, action of type α of player 1 is R, because R strictly dominates L
- Consider type $\alpha\beta$ of player 2:
 - type $\beta\gamma$ of 1 chooses $L \Rightarrow$



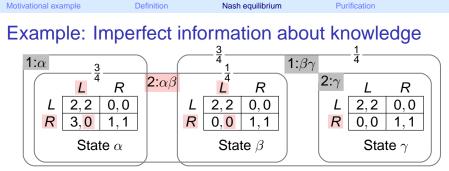
- In any Nash equilibrium, action of type α of player 1 is R, because R strictly dominates L
- Consider type $\alpha\beta$ of player 2:
 - type βγ of 1 chooses L ⇒ expected payoff of type αβ of player 2 to L is ³/₄ ⋅ 0 + ¹/₄ ⋅ 2 = ¹/₂



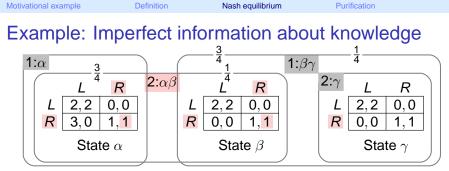
- In any Nash equilibrium, action of type α of player 1 is R, because R strictly dominates L
- Consider type $\alpha\beta$ of player 2:
 - type βγ of 1 chooses L ⇒ expected payoff of type αβ of player 2 to L is ³/₄ ⋅ 0 + ¹/₄ ⋅ 2 = ¹/₂ and to R is ³/₄ ⋅ 1 + ¹/₄ ⋅ 0 = ³/₄



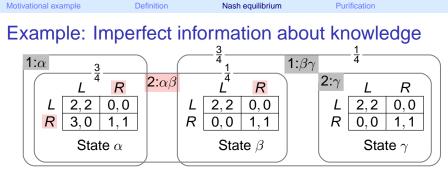
- ► type $\beta\gamma$ of 1 chooses $L \Rightarrow$ expected payoff of type $\alpha\beta$ of player 2 to L is $\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2 = \frac{1}{2}$ and to R is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4}$
- type $\beta\gamma$ of 1 chooses $R \Rightarrow$



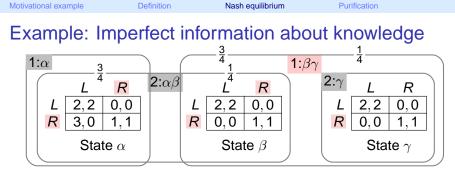
- ► type $\beta\gamma$ of 1 chooses $L \Rightarrow$ expected payoff of type $\alpha\beta$ of player 2 to L is $\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2 = \frac{1}{2}$ and to R is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4}$
- ► type $\beta\gamma$ of 1 chooses $R \Rightarrow$ expected payoff of type $\alpha\beta$ of player 2 to *L* is 0



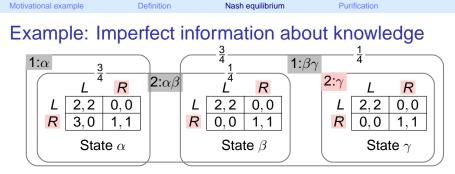
- ► type $\beta\gamma$ of 1 chooses $L \Rightarrow$ expected payoff of type $\alpha\beta$ of player 2 to L is $\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2 = \frac{1}{2}$ and to R is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4}$
- type βγ of 1 chooses R ⇒ expected payoff of type αβ of player 2 to L is 0 and to R is 1



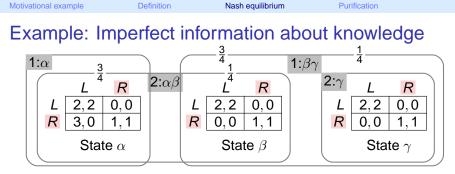
- ► type $\beta\gamma$ of 1 chooses $L \Rightarrow$ expected payoff of type $\alpha\beta$ of player 2 to L is $\frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2 = \frac{1}{2}$ and to R is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4}$
- type βγ of 1 chooses R ⇒ expected payoff of type αβ of player 2 to L is 0 and to R is 1
- Thus in any Nash equilibrium, action of type αβ of player 2 is R



Now consider type βγ of player 1. By same argument as before, her best action is *R*, regardless of action of type γ of player 2. Thus in any Nash equilibrium, action of type βγ of player 1 is *R*.



- Now consider type βγ of player 1. By same argument as before, her best action is *R*, regardless of action of type γ of player 2. Thus in any Nash equilibrium, action of type βγ of player 1 is *R*.



- Now consider type βγ of player 1. By same argument as before, her best action is *R*, regardless of action of type γ of player 2. Thus in any Nash equilibrium, action of type βγ of player 1 is *R*.

Hence unique Nash equilibrium: ((R, R), (R, R)).

Example: Imperfect information about knowledge

- Can add states, leading imperfection in information to be arbitrarily minor.
- Still will be unique Nash equilibrium in which all types of all players choose R.

"Equilibrium points in mixed strategies seem to be unstable, because any player can deviate without penalty from his equilibrium strategy even if he expects all other players to stick to theirs.

"Equilibrium points in mixed strategies seem to be unstable, because any player can deviate without penalty from his equilibrium strategy even if he expects all other players to stick to theirs. This paper proposes a model under which most mixed-strategy equilibrium points have full stability.

"Equilibrium points in mixed strategies seem to be unstable, because any player can deviate without penalty from his equilibrium strategy even if he expects all other players to stick to theirs. This paper proposes a model under which most mixed-strategy equilibrium points have full stability. It is argued that for any game Γ the players' uncertainty about the other players' exact payoffs can be modeled as a disturbed game Γ^* , i.e., as a game with small random fluctuations in the payoffs.

"Equilibrium points in mixed strategies seem to be unstable, because any player can deviate without penalty from his equilibrium strategy even if he expects all other players to stick to theirs. This paper proposes a model under which most mixed-strategy equilibrium points have full stability. It is argued that for any game Γ the players' uncertainty about the other players' exact payoffs can be modeled as a disturbed game Γ^* , i.e., as a game with small random fluctuations in the payoffs. Any equilibrium point in Γ , whether it is in pure or in mixed strategies, can "almost always" be obtained as a limit of a pure-strategy equilibrium point in the corresponding disturbed game Γ^* when all disturbances go to zero.

"Equilibrium points in mixed strategies seem to be unstable, because any player can deviate without penalty from his equilibrium strategy even if he expects all other players to stick to theirs. This paper proposes a model under which most mixed-strategy equilibrium points have full stability. It is argued that for any game Γ the players' uncertainty about the other players' exact payoffs can be modeled as a disturbed game Γ^* , i.e., as a game with small random fluctuations in the payoffs. Any equilibrium point in Γ , whether it is in pure or in mixed strategies, can "almost always" be obtained as a limit of a pure-strategy equilibrium point in the corresponding disturbed game Γ^* when all disturbances go to zero. Accordingly, mixed-strategy equilibrium points are stable — even though the players may make no deliberate effort to use their pure strategies with the probability weights prescribed by their mixed equilibrium strategies - because the random fluctuations in their payoffs will make them use their pure strategies approximately with the prescribed probabilities."

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

Three NEs:

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

• Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy
- Suppose that players have "moods" that affect the intensity of their preferences

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

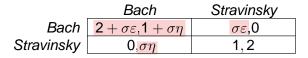
- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy
- Suppose that players have "moods" that affect the intensity of their preferences
- ▶ Player 1 has type $\varepsilon \sim U[-1, 1]$, unobservable to player 2

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$,1	$\sigma \varepsilon$,0
Stravinsky	0,0	1,2

- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy
- Suppose that players have "moods" that affect the intensity of their preferences
- ▶ Player 1 has type $\varepsilon \sim U[-1, 1]$, unobservable to player 2
- Parameter $\sigma \in (0, 1)$ captures strength of effect of moods

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon,$ 0
Stravinsky	$0\sigma\eta$	1,2

- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy
- Suppose that players have "moods" that affect the intensity of their preferences
- ▶ Player 1 has type $\varepsilon \sim U[-1, 1]$, unobservable to player 2
- Parameter $\sigma \in (0, 1)$ captures strength of effect of moods
- ▶ Player 2 similarly has type $\eta \sim U[-1, 1]$, independent of ε



- Three NEs: (B, B), (S, S), and $((\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}))$
- In mixed strategy equilibrium, each player is indifferent between all her strategies—she has no positive incentive to choose equilibrium strategy
- Suppose that players have "moods" that affect the intensity of their preferences
- ▶ Player 1 has type $\varepsilon \sim U[-1, 1]$, unobservable to player 2
- Parameter $\sigma \in (0, 1)$ captures strength of effect of moods
- ▶ Player 2 similarly has type $\eta \sim U[-1, 1]$, independent of ε
- We are interested in the outcome of the game when σ is close to zero

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2

States

Actions

Signals

Beliefs

Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions Signals Beliefs

Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions $\{B, S\}$ for each player Signals

Beliefs

Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions $\{B, S\}$ for each player Signals $T_1 = [-1, 1], \tau_1(\varepsilon, \eta) = \varepsilon;$

Beliefs Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions $\{B, S\}$ for each player Signals $T_1 = [-1, 1], \tau_1(\varepsilon, \eta) = \varepsilon; T_2 = [-1, 1], \tau_2(\varepsilon, \eta) = \eta;$ Beliefs Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions $\{B, S\}$ for each player Signals $T_1 = [-1, 1], \tau_1(\varepsilon, \eta) = \varepsilon; T_2 = [-1, 1], \tau_2(\varepsilon, \eta) = \eta;$ Beliefs ε and η are U[-1, 1] independently Payoffs

	Bach	Stravinsky
Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	0 ,ση	1,2

Bayesian game for given σ

Players 1 and 2 States Set $[-1, 1] \times [-1, 1]$ of pairs of moods Actions $\{B, S\}$ for each player Signals $T_1 = [-1, 1], \tau_1(\varepsilon, \eta) = \varepsilon; T_2 = [-1, 1], \tau_2(\varepsilon, \eta) = \eta;$ Beliefs ε and η are U[-1, 1] independently Payoffs Given in table

Purification of mixed strategy equilibria
BachBach $2 + \sigma \varepsilon$, $1 + \sigma \eta$ $\sigma \varepsilon$, 0Stravinsky $0, \sigma \eta$ 1, 2 $\varepsilon \in [-1, 1], \sigma \in (0, 1)$

Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma \varepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

 If every type of player 2 chooses B, optimal action of every type of player 1 is B (for any σ)

	Baon	onavinony
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

If every type of player 2 chooses B, optimal action of every type of player 1 is B (for any σ) and if every type of player 1 chooses B, optimal action of every type of player 2 is B

	Dacii	Oliavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- If every type of player 2 chooses B, optimal action of every type of player 1 is B (for any σ) and if every type of player 1 chooses B, optimal action of every type of player 2 is B
- So NE in which every type of each player chooses B

	Dacii	Oliavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- If every type of player 2 chooses B, optimal action of every type of player 1 is B (for any σ) and if every type of player 1 chooses B, optimal action of every type of player 2 is B
- So NE in which every type of each player chooses B
- Also NE in which every type of each player chooses S

Purification of mixed strategy equilibria
BachBach $2 + \sigma \varepsilon$, $1 + \sigma \eta$ $\sigma \varepsilon$, 0Stravinsky $0, \sigma \eta$ 1, 2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S

Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S

	Daon	Ollavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S ⇒ player 2 chooses B with probability ¹/₂(1 − η̄)

$$\frac{1}{2}$$

$$\frac{1}{2}(1+\overline{\eta})$$

$$\frac{1}{2}(1-\overline{\eta})$$

$$-\overline{\eta}$$

$$\eta \to 1$$

Bach	$2 + \sigma \varepsilon$, $1 + \sigma \eta$	$\sigma \varepsilon$, 0
Stravinsky	$0, \sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S ⇒ player 2 chooses B with probability ¹/₂(1 − η̄)
- Then for player 1, B is a best response if and only if

$$rac{1}{2}(1-\overline{\eta})(2+\sigmaarepsilon)+rac{1}{2}(1+\overline{\eta})\sigmaarepsilon\geq$$

Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0, \sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S ⇒ player 2 chooses B with probability ¹/₂(1 − η̄)
- Then for player 1, B is a best response if and only if

$$\frac{1}{2}(1-\overline{\eta})(2+\sigma\varepsilon) + \frac{1}{2}(1+\overline{\eta})\sigma\varepsilon \geq \frac{1}{2}(1-\overline{\eta})\cdot 0 + \frac{1}{2}(1+\overline{\eta})\cdot 1$$

	Dacii	Ollavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S ⇒ player 2 chooses B with probability ¹/₂(1 − η̄)
- Then for player 1, B is a best response if and only if

$$\frac{1}{2}(1-\overline{\eta})(2+\sigma\varepsilon) + \frac{1}{2}(1+\overline{\eta})\sigma\varepsilon \ge \frac{1}{2}(1-\overline{\eta})\cdot 0 + \frac{1}{2}(1+\overline{\eta})\cdot 1$$

or $\varepsilon \ge (3\overline{\eta}-1)/2\sigma$

	Dach	Sliavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

- Look for equilibrium in which each player chooses B when mood is above some threshold, otherwise S
- Suppose player 2 chooses B if η > η̄, otherwise S ⇒ player 2 chooses B with probability ¹/₂(1 − η̄)
- Then for player 1, B is a best response if and only if

$$\frac{1}{2}(1-\overline{\eta})(2+\sigma\varepsilon) + \frac{1}{2}(1+\overline{\eta})\sigma\varepsilon \geq \frac{1}{2}(1-\overline{\eta})\cdot 0 + \frac{1}{2}(1+\overline{\eta})\cdot 1$$

or $arepsilon \geq (3\overline{\eta} - 1)/2\sigma$

▶ Player 1 chooses *B* if $\varepsilon > (3\overline{\eta} - 1)/2\sigma$, *S* if $\varepsilon < (3\overline{\eta} - 1)/2\sigma$

Purification of mixed strategy equilibria Bach $2 + \sigma \varepsilon$ $1 + \sigma n$ $\sigma \varepsilon$ 0

Bach	$\mathbf{Z} + \sigma \varepsilon, \mathbf{T} + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0, \sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Similarly, if player 1 chooses B if ε > ε̄ then B is a best response for player 2 if and only if η > (1 + 3ε)/2σ

	Duch	OliuviiiSky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

- Similarly, if player 1 chooses B if ε > ε̄ then B is a best response for player 2 if and only if η > (1 + 3ε)/2σ
- So equilibrium in which

$$\overline{\eta} = (1+3\overline{arepsilon})/2\sigma \ \overline{arepsilon} = (3\overline{\eta}-1)/2\sigma$$

	Duch	OliuviiiSky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

- Similarly, if player 1 chooses B if ε > ε̄ then B is a best response for player 2 if and only if η > (1 + 3ε)/2σ
- So equilibrium in which

$$\overline{\eta} = (\mathsf{1} + 3\overline{arepsilon})/2\sigma \ \overline{arepsilon} = (3\overline{\eta} - \mathsf{1})/2\sigma$$

or

$$\overline{arepsilon} = -rac{1}{2\sigma+3} \qquad ext{and} \qquad \overline{\eta} = rac{1}{2\sigma+3}$$

Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of $\sigma,$ Bayesian game has Nash equilibrium

player 1 chooses B if and only if

$$\varepsilon > -1/(2\sigma + 3)$$

Purification of mixed strategy equilibria Bach Stravinsky

	Duch	OliuviiiSky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

player 1 chooses B if and only if

$$arepsilon > -1/(2\sigma+3)
ightarrow -rac{1}{3} ext{ as } \sigma
ightarrow 0$$

Purification of mixed strategy equilibria Bach Stravinsky

	Duch	OliuviiiSky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

player 1 chooses B if and only if

$$arepsilon > -1/(2\sigma+3)
ightarrow -rac{1}{3} ext{ as } \sigma
ightarrow 0$$

$$\frac{1}{2}$$

$$\Pr(S) = \frac{1}{3}$$

$$\Pr(B) = \frac{2}{3}$$

$$-1$$

$$\varepsilon \to 1$$

	Daon	Ollavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

player 1 chooses B if and only if

$$arepsilon > -1/(2\sigma+3)
ightarrow -rac{1}{3} ext{ as } \sigma
ightarrow 0$$

player 2 chooses B if and only if

$$\eta > 1/(2\sigma + 3)$$

	Daon	Ollavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

▶ player 1 chooses *B* if and only if $\varepsilon > -1/(2\sigma + 3) \rightarrow -\frac{1}{3}$ as $\sigma \rightarrow 0$

player 2 chooses B if and only if

$$\eta > 1/(2\sigma + 3) \rightarrow \frac{1}{3} \text{ as } \sigma \rightarrow 0$$

$$\frac{1}{2}$$

$$\Pr(S) = \frac{2}{3} \qquad \Pr(B) = \frac{1}{3}$$

$$-1 \qquad \frac{1}{2} \qquad \eta \rightarrow 1$$

	Daon	Ollavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

► player 1 chooses *B* if and only if $1/(2\pi + 3) \rightarrow 1$ as

$$arepsilon > -1/(2\sigma+3)
ightarrow -rac{1}{3} ext{ as } \sigma
ightarrow 0$$

player 2 chooses B if and only if

$$\eta > 1/(2\sigma + 3)
ightarrow rac{1}{3}$$
 as $\sigma
ightarrow 0$

So limit of these (pure, strict) equilibria as σ → 0 is mixed strategy equilibrium of original game (with σ = 0)

	Dacii	Oliavinsky
Bach	$2 + \sigma \varepsilon, 1 + \sigma \eta$	$\sigma arepsilon, 0$
Stravinsky	$0,\sigma\eta$	1,2

$$\varepsilon \in [-1, 1], \sigma \in (0, 1)$$

Nash equilibria

Thus for given value of σ , Bayesian game has Nash equilibrium

player 1 chooses B if and only if

$$arepsilon > -1/(2\sigma+3)
ightarrow -rac{1}{3} ext{ as } \sigma
ightarrow 0$$

player 2 chooses B if and only if

$$\eta > 1/(2\sigma + 3) \rightarrow \frac{1}{3}$$
 as $\sigma \rightarrow 0$

- So limit of these (pure, strict) equilibria as σ → 0 is mixed strategy equilibrium of original game (with σ = 0)
- For any σ > 0, each type of player has strict incentive to choose equilibrium action

Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game

For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]

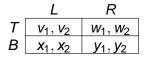
- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)
- Let $\varepsilon = (\varepsilon_i)_{i \in N}$

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)
- Let $\varepsilon = (\varepsilon_i)_{i \in N}$



- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)

• Let
$$\varepsilon = (\varepsilon_i)_{i \in N}$$

$$\begin{array}{c|ccccc} L & R \\ T & v_1 + 0.1, v_2 - 0.5 & w_1 - 0.2, w_2 + 0.3 \\ B & x_1 - 0.3, x_2 + 0.1 & y_1 + 0.8, y_2 - 0.1 \end{array}$$

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)

• Let
$$\varepsilon = (\varepsilon_i)_{i \in N}$$

$$\begin{array}{c|c} L & R \\ T & v_1 - 0.6, v_2 + 0.1 & w_1 - 0.1, w_2 + 0.4 \\ B & x_1 - 0.2, x_2 - 0.7 & y_1 - 0.5, y_2 + 0.4 \end{array}$$

- For each *i* ∈ *N* and *a* ∈ *A* let ε_i(*a*) be a random variable with range [−1, 1]
- Assume each $\varepsilon_i(a)$ is independent of every other
- ► Assume each ε_i(a) has an absolutely continuous distribution function (⇒ has density) and its density is continuously differentiable
- Will consider game in which payoff of player *i*'s payoff to a is u_i(a) + ε_i(a)

• Let
$$\varepsilon = (\varepsilon_i)_{i \in N}$$

$$\begin{array}{c|ccccc} L & R \\ T & v_1 + 0.2, v_2 - 0.3 & w_1 - 0.2, w_2 + 0.9 \\ B & x_1 - 0.6, x_2 - 0.1 & y_1 + 0.3, y_2 - 0.7 \end{array}$$

- Bayesian game $G(\varepsilon)$
 - Players States
 - Actions
 - Signals
 - Beliefs
 - Payoffs

- Bayesian game $G(\varepsilon)$
 - Players *N* States Actions Signals
 - Beliefs
 - Payoffs

Bayesian game $G(\varepsilon)$

```
Players N
States [-1, 1]^{N \times A} (set of possible values of \varepsilon_i(a)'s)
Actions
Signals
```

- **Beliefs**
- Payoffs

```
Bayesian game G(\varepsilon)
```

```
Players N
States [-1, 1]^{N \times A} (set of possible values of \varepsilon_i(a)'s)
Actions A_i for each player i
Signals
```

Beliefs

Payoffs

Bayesian game $G(\varepsilon)$

```
Players N
```

- States $[-1, 1]^{N \times A}$ (set of possible values of $\varepsilon_i(a)$'s)
- Actions A_i for each player *i*
- Signals Set of signals for each player *i* is $[-1, 1]^{A_i}$; player *i*'s signal function is $\tau_i(\varepsilon) = \varepsilon_i$

Beliefs

Payoffs

- Bayesian game $G(\varepsilon)$
 - Players N
 - States $[-1, 1]^{N \times A}$ (set of possible values of $\varepsilon_i(a)$'s)
 - Actions A_i for each player *i*
 - Signals Set of signals for each player *i* is $[-1, 1]^{A_i}$; player *i*'s signal function is $\tau_i(\varepsilon) = \varepsilon_i$
 - Beliefs The belief of each player *i* is that each $\varepsilon_i(a)$ is an independent draw from its distribution

Payoffs

- Bayesian game $G(\varepsilon)$
 - Players N
 - States $[-1, 1]^{N \times A}$ (set of possible values of $\varepsilon_i(a)$'s)
 - Actions A_i for each player *i*
 - Signals Set of signals for each player *i* is $[-1, 1]^{A_i}$; player *i*'s signal function is $\tau_i(\varepsilon) = \varepsilon_i$
 - Beliefs The belief of each player *i* is that each $\varepsilon_i(a)$ is an independent draw from its distribution
 - Payoffs Payoff of player *i* for the action profile *a* in state ω is $u_i(a) + \omega_i(a)$ (where $\omega_i(a)$ is the realization of $\varepsilon_i(a)$)

Proposition (Harsanyi 1973)

Proposition (Harsanyi 1973)

For almost any finite strategic game G, almost any mixed strategy equilibrium of G

Proposition (Harsanyi 1973)

For almost any finite strategic game *G*, almost any mixed strategy equilibrium of *G* is the mixed strategy profile associated with the limit as $\gamma \rightarrow 0$ of a sequence of pure strategy equilibria of $G(\gamma \varepsilon)$.

Proposition (Harsanyi 1973)

For almost any finite strategic game *G*, almost any mixed strategy equilibrium of *G* is the mixed strategy profile associated with the limit as $\gamma \rightarrow 0$ of a sequence of pure strategy equilibria of $G(\gamma \varepsilon)$.

Note that each pure strategy equilibrium of $G(\gamma \varepsilon)$ is strict.

Proposition (Harsanyi 1973)

For almost any finite strategic game *G*, almost any mixed strategy equilibrium of *G* is the mixed strategy profile associated with the limit as $\gamma \rightarrow 0$ of a sequence of pure strategy equilibria of $G(\gamma \varepsilon)$.

Note that each pure strategy equilibrium of $G(\gamma \varepsilon)$ is strict.

So we can think of mixed strategy equilibria as approximations of strict pure strategy equilibria when players have a small amount of private information about their payoffs.