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Characterization of mixed strategy Nash equilibrium
I α∗ is a mixed strategy Nash equilibrium⇔ α∗i is a best

response to α∗−i for all i
I When is a mixed strategy αi a best response to α∗−i?
I Suppose expected payoffs to player i ’s actions, given α∗−i ,

are:

↑
i ’s payoff

i ’s actions: a b c d e f g

I What mixed strategies of player i are best responses to
α∗−i?

I Mixed strategy αi is a best response to α∗−i if and only if it
assigns probability zero to c, d , and f ; all probability must
be assigned to actions that are best responses to α∗−i
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Characterization of mixed strategy Nash equilibrium

Definition
Support of mixed strategy = set of actions to which strategy
assigns positive probability

Proposition (Lemma 33.2)
α∗ is a mixed strategy Nash equilibrium

⇔

for every player i , α∗i is a best response to α∗−i

⇔

for every player i , every action in support of α∗i is a

best response to α∗−i .
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Characterization of mixed strategy Nash equilibrium

I Consider two-player game
I Actions 1, . . . , k for player 1 and 1, . . . ,m for player 2
I Mixed strategy pair ((p1, . . . , pk ), (q1, . . . , qm)) is mixed

strategy Nash equilibrium if and only if there exist numbers
π1 and π2 such that

E(u1(j , q))

{
= π1 for every action j with pj > 0

≤ π1 for every action j with pj = 0

and

E(u2(p, j))

{
= π2 for every action j with qj > 0

≤ π2 for every action j with qj = 0
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Example
Is strategy pair a mixed strategy Nash equilibrium?

L (0) C (1
3 ) R (2

3 )

T (3
4 ) ·, 2 3, 3 1, 1 5

3

M (0) ·, · 0, · 2, · 4
3

B (1
4 ) ·, 4 5, 1 0, 7 5

3
5
2

5
2

5
2

(Unspecified payoffs are irrelevant.)

I Compute expected payoff of each action, given other
player’s actions

I If every action in support of each player’s mixed strategy
yields same payoff and actions outside support yield at
most this payoff then strategy pair is mixed strategy Nash
equilibrium
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Finding mixed strategy Nash equilibria

Finding mixed strategy equilibrium in which each player’s
strategy has given support, if one exists:
I For each player i = 1, . . . , n, let Si ⊆ Ai

I To find mixed strategy equilibrium (p1, . . . , pn) in which
support of pi is Si for each player i ,
I find solution of system of equations

E(u1(j , p−1)) = π1 for every j ∈ Si

...

E(un(j , p−n)) = πn for every j ∈ Sn

(if one exists)
I Check, for each player i , whether E(ui (j , p−i )) ≤ πi for

every action j of player i
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Example

L C R
T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

Equilibrium in which support of player 1’s strategy is {T ,M}
and support of player 2’s strategy is {L,C}?

For player 1 to get same payoff from T and B need

q1 + 3q2 = π1

q1 = π1

which obviously has no solution with q2 > 0

So no equilibrium with these supports
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Example
L C R

T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

Equilibrium in which support of player 1’s strategy is {T ,B} and
support of player 2’s strategy is {L,C}?

For player 1 to get same payoff from T and B need

q1 + 3q2 = π1

3q1 + 2q2 = π1
⇒ q1 = 1

3 , q2 = 2
3 , π1 = 7

3 (q1 + q2 = 1)

For player 2 to get same payoff from L and C need

2p1 + 4p3 = π2

3p1 + p3 = π2
⇒ p1 = 3

4 , p3 = 1
4 , π2 = 10

4 (p1 + p3 = 1)
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Example
L C R

T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

Equilibrium in which support of player 1’s strategy is {T ,B} and
support of player 2’s strategy is {L,C}?

q1 = 1
3 , q2 = 2

3 , π1 = 7
3 ; p1 = 3

4 , p3 = 1
4 , π2 = 10

4

For an equilibrium, need also

1’s payoff to M ≤ π1 ⇒ q1 ≤
7
3 ,which is true

and

2’s payoff to R ≤ π2 ⇒ p1 + 7p3 ≤
10
4 ,which is true

So equilibrium exists with these supports
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Finding all mixed strategy equilibria

Procedure

I For each player i , choose a set Si ⊆ Ai

I Find all the mixed strategy equilibria of the game in which
the support of the strategy of each player i is Si

I Repeat for all possible profiles (Si)i∈N of such subsets
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Example
L R

T 1, 1 2, 0
B 1, 0 0, 2

I Subsets of A1: {T}, {B}, {T ,B}
I Subsets of A2: {L}, {R}, {L,R}

Pairs of subsets:

P1 P2 NE?
{T} {L} Yes
{T} {R} No: R is not best response
{T} {L,R} No: P2 not indifferent between L, R
{B} {L} No: L is not best response
{B} {R} No: B is not best response
{B} {L,R} No: P2 not indifferent between L, R
{T ,B} {L} L is best response⇔ p ≥ 2(1− p)⇔ p ≥ 2

3
{T ,B} {R} No: P1 not indifferent between T , B
{T ,B} {L,R} No: B not best response if q < 1
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Example

L C R
T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

P1 P2 NE?
{T} {L} No: L is not BR
{T} {C} Yes

Other singleton pairs No: . . .
{T} {L,C} No: P2 not indifferent between L, C

Other pairs w/ 1
action in support
for one player

Only one with indifference: ({T ,M}, {L}).
Not NE, because B is better than T , M.

{T ,M} {L,C} No: L is not BR to any strategy with sup-
port {T ,M}
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Example

L C R
T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

P1 P2 NE?
{T ,B} {L,C} Find q s.t. P1 indifferent between T

and B: q = 1
3 . Find p s.t. P2 indiffer-

ent between L and C: p = 3
4 . Now

check payoffs to M and R: payoff to
M ≤ payoff to T , B; payoff to R ≤
payoff to L, C ⇒ Nash equilibrium.

Other pairs w/ 2
actions in each
support

. . .
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Example

L C R
T 1, 2 3, 3 1, 1
M 1, 0 0, 2 2, 1
B 3, 4 2, 1 0, 7

P1 P2 NE?
Pairs w/ 2 actions
in support for 1
player, 3 actions
in support for
other

. . .

{T ,M,B} {L,C,R} For each player, three equations in
three unknowns.
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Finding all mixed strategy equilibria

I Method is exhaustive
I . . . and exhausting for even moderate sized games
I Number of possible supports for mixed strategy of player

with k actions: 2k − 1
I So n players each with k actions⇒ (2k − 1)n possible

pairs of supports
I 4 players, 4 actions each⇒ (15)4 ≈ 50,000 possible pairs
I 2 players, 10 actions each⇒ (1,023)2 ≈ 1,000,000

possible pairs
I Computationally efficient methods exist to find an

equilibrium
I See http://www.gambit-project.org/ and

Chapter 4 of Multiagent Systems by Shoham and
Leyton-Brown

http://www.gambit-project.org/
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Strict Nash equilibrium

Definition
A Nash equilibrium is strict if, for every player, the payoff to
every nonequilibrium strategy is less than the payoff to her
equilibrium strategy, given the other players’ strategies

Examples

I Nash equilibrium of Prisoner’s Dilemma is strict
I Pure strategy Nash equilibria of BoS are strict
I Nash equilibrium of Bertrand’s duopoly game is not strict
I Mixed strategy Nash equilibrium in which some player’s

strategy is not pure is not strict (all actions in support of
strategy yield same payoff)
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Incentives in mixed strategy Nash equilibrium

I Every mixed strategy with the same support as equilibrium
mixed strategy is best response to other players’ strategies

I So no player has a positive incentive to choose equilibrium
strategy

I What determines her equilibrium strategy?
I Strategy is determined by requirement that other players’

strategies be optimal
I Specifically, in two-player game, one player’s equilibrium

mixed strategy keeps other player indifferent between a set
of her actions, so that she is willing to randomize

L (2
3 ) R (1

3 )
T (1

5 ) 1, 0 0, 4
B (4

5 ) 0, 1 2, 0
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Example: reporting a crime (“volunteer’s dilemma”)

I Many people witness a crime
I One person’s reporting crime to police suffices
I When deciding whether to report, each person doesn’t

know whether anyone else has reported
I A person who reports bears a cost c
I If the crime is reported, everyone obtains the benefit v > c
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Application: reporting a crime (“volunteer’s dilemma”)

Strategic game

Players n individuals

Actions For each player, {Call,Don’t call}

Payoffs For each player i ,

ui(a) =






v − c if ai = Call

v if ai = Don’t call and

aj = Call for some j 6= i

0 if aj = Don’t call for all j
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Application: reporting a crime (“volunteer’s dilemma”)

Nash equilibria

I Equilibria in pure strategies? n pure Nash equilibria, in
each of which exactly one player calls

I How can these equilibria be realized? For an equilibrium in
which player 1 calls, who is player 1?

I Look for symmetric equilibrium, in mixed strategies
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Application: reporting a crime (“volunteer’s dilemma”)
Mixed strategy Nash equilibrium
In mixed strategy equilibrium in which every player calls with
same probability p with 0 < p < 1,

payoff if player calls = payoff if player doesn’t call

⇒

v − c = 0 · Pr{no one else calls}+ v · Pr{≥ one other person calls}

⇒
v − c = v · (1− Pr{no one else calls})

⇒
c/v = Pr{No one else calls} = (1− p)n−1

⇒
p = 1− (c/v)1/(n−1)
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Application: reporting a crime (“volunteer’s dilemma”)

Mixed strategy Nash equilibrium

I Conclusion: in a symmetric mixed strategy Nash
equilibrium, every player calls with probability

p = 1− (c/v)1/(n−1)

(Note: this number is between 0 and 1.)
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Application: reporting a crime (“volunteer’s dilemma”)
Mixed strategy Nash equilibrium: comparative statics

p = 1− (c/v)1/(n−1)

I n ↑ ⇒ p ↓: more people⇒ each is less likely to call
I Probability that at least one person calls:

Pr{at least one person calls}

= 1− Pr{no one calls}

= 1− Pr{i does not call}Pr{no one else calls}

= 1− (1− p)(c/v)

Because n ↑ ⇒ p ↓,

n ↑ ⇒ Pr{at least one person calls} ↓

⇒ the more people, the less likely the police are informed
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Domination by a mixed strategy

An action may be dominated by a mixed strategy even if it is not
dominated by a pure strategy

Example

L R
T 1 1
M 0 4
B 4 0

(where the payoffs are those of player 1)

I 1
2 ·M ⊕

1
2 · B strictly dominates T

An action strictly dominated by a mixed strategy is not used
with positive probability in a mixed strategy equilibrium, and
hence can be eliminated when looking for Nash equilibria
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Mixed strategy equilibrium

I Interpretation: Read Section 3.2 of book
I Omit Section 3.3 (correlated equilibrium)
I Omit Section 3.4 (evolutionary equilibrium)
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Another approach to outcomes in strategic games

Definition
A belief of player i (about the other players’ actions) is a
probability distribution on ×j∈N\{i}Aj (the set of lists of the other
players’ actions)

Note: a belief may involve correlation between the other
players’ actions

Definition
A player in a strategic game is rational if her mixed strategy is a
best response to some belief
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Implications of rationality

Every player

is rational

m belief about other
players’ actions is

correct
action is best

response to a belief
about other players’

actions

Nash equilibrium
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Implications of rationality

Every player

is rational

m belief about other
players’ actions is

correct
action is best

response to a belief
about other players’

actions
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Implications of rationality

Which actions are best responses to some belief?

Proposition
An action is a best response to some belief if and only if it is not
strictly dominated by a mixed strategy.

So every player is rational⇒ no player’s strategy is strictly
dominated by any mixed strategy

Example: Prisoner’s Dilemma

Player 1

Player 2
Q F

Q 3, 3 0, 4
F 4, 0 1, 1

Players are rational⇒ action pair is (F ,F )
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Implications of rationality
Every player

is rational

m

no player’s strategy
is strictly dominated
by a mixed strategy

. . . and believes that
other players are

rational
. . . and believes that
other players believe

she is rational

. . . and believes that
other players

believe she believes
they are rational

. . . and so on

?
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Implications of rationality
Example L C R

T 0, 4 4, 0 2, 1
M 1, 0 3, 1 3, 2
B 0, 2 2, 3 1, 1

I Player 1 is rational⇒ does not choose B (strictly
dominated by M)

I Player 2 believes player 1 is rational⇒ player 2 believes
player 1 does not choose B
So player 2 is rational⇒ she does not choose C (strictly
dominated by R)

I Player 1 believes that player 2 is rational and that player 2
believes player 1 is rational⇒ player 1 believes player 2
believes player 1 does not choose B and that player 2
therefore does not choose C
So player 1 is rational⇒ she does not choose T

I In one more step . . . player 2 does not choose L
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Implications of rationality
Example L C R

T 0, 4 4, 0 2, 1
M 1, 0 3, 1 3, 2
B 0, 2 2, 3 1, 1

Conclusion
Every player is rational

and believes every other player is rational
and believes every other player believes she is rational

and so on . . .

⇒ only action pair that remains is (M,R)
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Implications of rationality

I Each player’s action in any action profile that survives
iterated elimination of strictly dominated actions is
rationalizable
I Note: domination = domination by a mixed strategy

I Any action used with positive probability in a mixed
strategy Nash equilibrium is rationalizable

I But in many games other actions also are rationalizable
I If no action of any player is strictly dominated, then all

actions of every player are rationalizable
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Bayesian games

I Strategic game models situation in which each player
knows preferences of other players

I In some situations, players are not certain of other players’
preferences

I Model of Bayesian Game allows players to face uncertainty
about other players’ preferences
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Bayesian games: motivational example
Variant of BoS with imperfect information

I Player 1 doesn’t know whether
I player 2 prefers to go out with her—player 2 is type m
I or prefers to avoid her—player 2 is type v

I She thinks probabilities of states are 1
2–1

2

I Player 2 knows player 1’s preferences
I Probabilities are involved, so need players’ preferences

over lotteries, even if interested only in pure strategy
equilibria⇒ Bernoulli payoffs

B S
B 2, 1 0, 0
S 0, 0 1, 2

meet (1
2 )

B S
B 2, 0 0, 2
S 0, 1 1, 0

avoid (1
2 )

1
2: m 2: v
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Bayesian games: motivational example
Variant of BoS with imperfect information

B S
B 2, 1 0, 0
S 0, 0 1, 2

meet (1
2 )

B S
B 2, 0 0, 2
S 0, 1 1, 0

avoid (1
2 )

1
2: m 2: v

An equilibrium

I Player 1 chooses B
I Type m of player 2 chooses B and type v chooses S
I Argument:

I P1 chooses B ⇒ payoff 1
2 · 2 + 1

2 · 0 = 1; deviates to S ⇒
payoff 1

2 · 0 + 1
2 · 1 = 1

2
I Type m of player 2: deviate to S ⇒ payoff 0
I Type v of player 2: deviate to B ⇒ payoff 0
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Bayesian games: motivational example
Another variant of BoS with imperfect information

Neither player knows whether other wants to go out with her

1: m1

1: v1

2: m2 2: v2

B S
B 2, 1 0, 0
S 0, 0 1, 2

State mm (1
3 )

B S
B 2, 0 0, 2
S 0, 1 1, 0

State mv (1
3 )

B S
B 0, 1 2, 0
S 1, 0 0, 2

State vm (1
6 )

B S
B 0, 0 2, 2
S 1, 1 0, 0

State vv (1
6 )
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Bayesian games: motivational example
Another variant of BoS with imperfect information

I How to model information?
I Each player receives signal about state before choosing

action:
I Player 1 receives same signal, say m1, in states mm and

mv , and same signal, say v1 6= m1, in states vm and vv
I Player 2 receives same signal, say m2, in states mm and

vm, and same signal, say v2 6= m2, in states mv and vv .
I Player i who receives signal ti is type ti of player i
I Type m1 of player 1’s posterior belief: state is mm with

probability 1
2 and mv with probability 1

2
Type v1 of player 1’s posterior belief: state is vm with
probability 1

2 and vv with probability 1
2

I Type m2 of player 2’s posterior belief: state is mm with
probability 2

3 and vm with probability 1
3

Type v2 of player 2’s posterior belief: state is mv with
probability 2

3 and vv with probability 1
3
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Bayesian games
Elements new relative to strategic game are indicated in red

A Bayesian game consists of
I a finite set N (players)
I a set Ω (states)
I for each player i ∈ N

I a set Ai (actions)
I a set Ti (of signals that i may receive) and a function
τi : Ω→ Ti that associates a signal with each state (i ’s
signal function)

I a probability measure pi on Ω (i ’s prior belief) with
pi (τ

−1
i (ti )) > 0 for all ti ∈ Ti

I a preference relation over probability distributions over
A× Ω (represented by the expected value of a Bernoulli
payoff function).

Notes
I i has no information: τi(ω) = τi(ω

′) for all ω, ω′

I i has perfect information: τi(ω) 6= τi(ω
′) if ω 6= ω′
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First example

Players N = {1, 2} (the pair of people)

States Ω = {meet, avoid}

Actions A1 = A2 = {B,S}

Signals T1 = {z} and τ1(meet) = τ1(avoid) = z
T2 = {m, v} and τ2(meet) = m and τ2(avoid) = v

Beliefs p1(meet) = p2(meet) = 1
2 ,

p1(avoid) = p2(avoid) = 1
2

Payoffs The payoffs ui(a,meet) of each player i for all
possible action pairs are given in the left panel of
the figure on the earlier slide and the payoffs
ui(a, avoid) are given in the right panel
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Second example

Players N = {1, 2} (the pair of
people)

States Ω = {mm,mv , vm, vv}

Actions A1 = A2 = {B,S}

Signals T1 = {m1, v1}, τ1(mm) = τ1(mv) = m1, and
τ1(vm) = τ1(vv) = v1

T2 = {m2, v2}, τ2(mm) = τ2(vm) = m2, and
τ2(mv) = τ2(vv) = v2

Beliefs pi(mm) = pi(mv) = 1
3 and pi(vm) = pi(vv) = 1

6 for
i = 1, 2

Payoffs The payoffs ui(a, ω) of each player i for all possible
action pairs and states are given on the earlier
slide
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Second example: Nash equilibria

1: m1

1: v1

2: m2 2: v2

Payoffs
1
2 · 2 + 1

2 · 0 = 1
1
2 · 0 + 1

2 · 1 = 1
2

1
2 · 0 + 1

2 · 2 = 1
1
2 · 1 + 1

2 · 0 = 1
2

Payoffs: 1 0 0 2

Posterior: 1
2 Posterior: 1

2

Posterior: 1
2 Posterior: 1

2

B S
B 2, 1 0, 0
S 0, 0 1, 2

State mm (1
3 )

B S
B 2, 0 0, 2
S 0, 1 1, 0

State mv (1
3 )

B S
B 0, 1 2, 0
S 1, 0 0, 2

State vm (1
6 )

B S
B 0, 0 2, 2
S 1, 1 0, 0

State vv (1
6 )

Nash equilibrium: ((B,B), (B,S))
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Second example: Nash equilibria

1: m1

1: v1

2: m2 2: v2
Posterior: 2

3 Posterior: 2
3

Posterior: 1
3 Posterior: 1

3

B S
B 2, 1 0, 0
S 0, 0 1, 2

State mm (1
3 )

B S
B 2, 0 0, 2
S 0, 1 1, 0

State mv (1
3 )

B S
B 0, 1 2, 0
S 1, 0 0, 2

State vm (1
6 )

B S
B 0, 0 2, 2
S 1, 1 0, 0

State vv (1
6 )

Another Nash equilibrium: ((S,B), (S,S))
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