ECO2030: Microeconomic Theory II, module 1 Lecture 1

Martin J. Osborne

Department of Economics University of Toronto

2018.10.23

© 2018 by Martin J. Osborne

Table of contents Decision problems

Strategic games Example: Prisoner's Dilemma Example: Bach or Stravinsky? Example: Cournot's oligopoly game

Nash equilibrium

Example: Prisoner's Dilemma Example: Bach or Stravinsky? Example: Matching Pennies Example: Game with indifference Example: Cournot's model of oligopoly

Best responses

Exploration

Example: Bertrand's model of oligopoly

Domination

Strict domination Weak domination

Symmetric games

Single person decision problem

Model

A decision problem consists of

- a set A (the set of actions)
- a preference relation \succeq on A

Theory

Decision-maker chooses $a^* \in A$ that is best according to \succeq :

 $a^* \succeq a$ for all $a \in A$

Many decision-makers: Strategic games

Model

- A strategic game consists of
 - a finite set N (the set of players)
 - for each player $i \in N$
 - ► a nonempty set A_i (the set of *actions* available to player i)
 - a preference relation \succeq_i on $\times_{j \in N} A_j$.

Decision problems Strategic games Nash equilibrium Best responses Exploration Domination Symmetric games

Example

- Payoff representation isn't unique; any increasing function may be applied separately to each player's payoffs
- Story? Prisoner's Dilemma

Example: BoS

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

Bach or Stravinsky?

Story

- Two people wish to go out together
- The options are concerts of music by Bach and by Stravinsky
- They want to go out together, but one prefers Bach and the other prefers Stravinsky
- If they go to different concerts, each of them is equally unhappy listening to the music of either composer

Example: Cournot's oligopoly game

Players $N = \{1, \ldots, n\}$ (firms)

Actions $A_i = [0, \infty)$ for i = 1, ..., n (set of possible outputs)

Preferences Preferences of each firm are represented by payoff function u_i with

$$u_i(q_1,\ldots,q_n) = q_i P\left(\sum_{j=1}^n q_j\right) - C_i(q_i)$$

(firm *i*'s profit), where $P : \mathbb{R}_+ \to \mathbb{R}_+$ ("inverse demand function") and $C_i : \mathbb{R}_+ \to \mathbb{R}_+$ (firm *i*'s cost function).

Equilibrium

Nash equilibrium

 a^* is a Nash equilibrium if for all $i \in N$

 a_i^* is optimal for *i* according to \succeq_i given a_{-i}^*

Definition

A Nash equilibrium of a strategic game $\langle N, (A_i), (\succeq_i) \rangle$ is an action profile $a^* \in \times_{i \in N} A_i$ such that for all $i \in N$

$$(a_{-i}^*,a_i^*) \succeq_i (a_{-i}^*,a_i)$$
 for all $a_i \in A_i$.

Prisoner's Dilemma

Player 2

$$Q F$$

Player 1 $\begin{array}{c} Q \\ F \end{array}$
 $\begin{array}{c} 3,3 \\ 0,4 \\ \hline 4,0 \\ 1,1 \end{array}$

Check each action pair in turn:

- (Q, Q): not Nash equilibrium because if player 2 chooses
 Q, player 1 is better off choosing F than choosing Q
- ▶ (Q, F): not Nash equilibrium because ...
- ► (F, Q): not Nash equilibrium because ...
- (F, F): Nash equilibrium because F is at least as good as Q for each player if the other player chooses F

So: unique Nash equilibrium, (F, F)

Decision problems Strategic games Nash equilibrium Best responses Exploration Domination Symmetric games

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- Two Nash equilibria, (Bach, Bach) and (Stravinsky, Stravinsky)
- Note: equilibria are not Pareto ranked

Matching Pennies

No Nash equilibrium!

Example

- ► (*T*, *L*): Nash equilibrium
- (T, R): Nash equilibrium
- (B, L): Not Nash equilibrium
- (B, R): Nash equilibrium

Example: Cournot's model of oligopoly

Players
$$N = \{1, ..., n\}$$
 (firms).
Actions $A_i = [0, \infty)$ for $i = 1, ..., n$ (set of possible outputs).

Preferences Firm *i*'s preferences are represented by payoff function u_i with

$$u_i(q_1,\ldots,q_n) = q_i P\left(\sum_{j=1}^n q_j\right) - C_i(q_i)$$

(*i*'s profit), where P is an inverse demand function and C_i is firm *i*'s cost function.

Can't examine every action pair in turn ... Need a different technique

Best response functions

$$\begin{aligned} & \mathcal{B}_i(a_{-i}) = \text{set of player } i\text{'s best actions given } a_{-i} \\ &= \{ a_i \in \mathcal{A}_i \colon (a_{-i},a_i) \succsim_i (a_{-i},a_i') \text{ for all } a_i' \in \mathcal{A}_i \} \end{aligned}$$

In terms of payoffs,

$$B_i(a_{-i}) = \operatorname*{arg\,max}_{a_i} u_i(a_{-i},a_i)$$

Nash equilibrium

 $a^* \in \times_{i \in N} A_i$ is a Nash equilibrium if and only if

$$a_i^* \in B_i(a_{-i}^*)$$
 for all $i \in N$

Best response functions

Procedure for finding Nash equilibria

- 1. Find best response function of each player
 - Optimization problem
- 2. Find all profiles a^* of actions for which

$$a_i^* \in B_i(a_{-i}^*)$$
 for all $i \in N$

Set of conditions to be satisfied simultaneously

Games in which players have unique best responses

Suppose each player *i* has unique best response to each a_{-i}:

 $B_i(a_{-i})$ is a singleton for all $i \in N$ and all a_{-i}

• Let $B_i(a_{-i}) = \{b_i(a_{-i})\}$ for all *i* and all a_{-i}

Then

 $a^* \in A$ is Nash equilibrium $\Leftrightarrow a_i^* = b_i(a_{-i}^*)$ for all $i \in N$

- Thus if set of players is $N = \{1, ..., n\}$, procedure is:
 - 1. find best response function b_i of each player i
 - 2. find solutions of set of *n* simultaneous equations

$$a_{i}^{*} = b_{i}(a_{-i}^{*})$$
 for $i = 1, ..., n$

in *n* unknowns a_1^*, \ldots, a_n^*

Problem 1 on Problem Set 1 asks you to use procedure to find Nash equilibria of example of Cournot's model

A less well-defined method of finding Nash equilibria

- Calculating complete best response function of every player is difficult in some games
- ... and may not be necessary

Procedure for finding Nash equilibria

- 1. Explore players' best responses and isolate action profiles that appear to be equilibria
- 2. Prove that every such action profile is an equilibrium
- 3. Prove that no other action profile is an equilibrium

Example: Bertrand's model of oligopoly

Players $N = \{1, ..., n\}$ (firms) Actions $A_i = [0, \infty)$ for i = 1, ..., n (set of possible prices) Preferences Firm *i*'s preferences are represented by its profit:

$$u_i(p_1, \dots, p_n) = \begin{cases} p_i \frac{D(p_i)}{m(p)} - C_i \left(\frac{D(p_i)}{m(p)}\right) & \text{if } p_i = \min_{j \in N} p_j \\ 0 & \text{if } p_i > \min_{j \in N} p_j \end{cases}$$

where

- D is demand function
- C_i is firm *i*'s cost function with $C_i(0) = 0$
- m(p) is number of firms *j* for which

 $p_j = \min_{k \in N} p_k$

Example of Bertrand's duopoly: constant unit cost and linear demand function

Best responses

Exploration

Symmetric games

• Two firms: n = 2

Decision problems

•
$$C_i(q_i) = cq_i$$
 for $i = 1, 2, and c > 0$

Nash equilibrium

Assumptions \Rightarrow payoff function of each firm *i* is

$$u_i(p_1, p_2) = \begin{cases} (p_i - c)(\alpha - p_i) & \text{if } p_i < p_j \\ \frac{1}{2}(p_i - c)(\alpha - p_i) & \text{if } p_i = p_j \\ 0 & \text{if } p_i > p_j \end{cases}$$

where *j* is the other firm (j = 2 if i = 1, and j = 1 if i = 2)

Assumptions \Rightarrow payoff function of each firm *i* is

$$u_i(p_1, p_2) = \begin{cases} (p_i - c)(\alpha - p_i) & \text{if } p_i < p_j \\ \frac{1}{2}(p_i - c)(\alpha - p_i) & \text{if } p_i = p_j \\ 0 & \text{if } p_i > p_j \end{cases}$$

where *j* is the other firm (j = 2 if i = 1, and j = 1 if i = 2)

Exploration

- *p_j* > *c* ⇒ firm *i* gets almost twice as much profit by charging *p_j* − ε than by charging *p_j*, for ε small
- ► ⇒ strategic pressure to reduce prices?
- But prices less than c yield losses, so prices won't go below c
- Conclusion: (c, c) may be only equilibrium?

Proof that (c, c) is a Nash equilibrium

$$u_i(p_1, p_2) = \begin{cases} (p_i - c)(\alpha - p_i) & \text{if } p_i < p_j \\ \frac{1}{2}(p_i - c)(\alpha - p_i) & \text{if } p_i = p_j \\ 0 & \text{if } p_i > p_j \end{cases}$$

►
$$u_1(c,c) = 0$$

▶ $p_1 < c \Rightarrow u_1(p_1, c) < 0$ (given $\alpha > c$, so that $\alpha > p_1$) ▶ $p_1 > c \Rightarrow u_1(p_1, c) = 0$

Thus

$$u_1(c,c) \ge u_1(p_1,c)$$
 for all p_1

and similarly for firm 2, so (c, c) is a Nash equilibrium

Proof that no pair $(p_1, p_2) \neq (c, c)$ is Nash equilibrium

Best responses

Exploration

▶ p₁ < c and p₁ ≤ p₂? No: u₁(p₁, p₂) < 0 and u₁(c, p₂) = 0, so firm 1 can profitably deviate to c

Nash equilibrium

- ▶ p₂ < c and p₂ ≤ p₁? No: firm 2 can profitably deviate to c
- p₁ = c and p₂ > c? No: firm 1 can profitably *raise* its price: u₁(c, p₂) = 0 and u₁(p₁, p₂) > 0 for c < p₁ < p₂ and p₁ < α</p>
- $p_2 = c$ and $p_1 > c$? No: similar reason
- *p_i* ≥ *p_j* > *c*? No: firm *i* can increase its profit by lowering *p_i* to slightly below *p_j* if *D*(*p_j*) > 0 (i.e. if *p_j* < *α*) and to *p^m* if *D*(*p_j*) = 0 (i.e. if *p_j* ≥ *α*)

Symmetric games

Methods for finding Nash equilibria: Summary

Appropriate method depends on the game

- Exhaustive Check every action profile
- Best responses Find best response function of every player and solve for an equilibrium
- Exploration + proof Isolate possible equilibria based on exploration of the game, then prove that you have found all equilibria

Finding Nash equilibria: Example

- Regardless of player 2's action, T is better than B for player 1
- We say B is strictly dominated by T for player 1
- ► B is not a best response of player 1 to any action of player 2 ⇒ is not used in any Nash equilibrium
- So when looking for Nash equilibria, we can eliminate B from consideration

Strictly dominated actions

Definition

In a strategic game $\langle N, (A_i), (\succeq_i) \rangle$, player *i*'s action $b_i \in A_i$ strictly dominates her action $b'_i \in A_i$ if

 $(a_{-i}, b_i) \succ_i (a_{-i}, b'_i)$ for every list a_{-i} of other players' actions,

where \succ_i is player *i*'s strict preference relation.

Strictly dominated actions and Nash equilibrium

- If an action strictly dominates the action b'_i, we say that b'_i is strictly dominated
- A strictly dominated action is not a best response to any actions of the other players (whatever the other players do, the action that strictly dominates it is better)
- So a strictly dominated action is not used in any Nash equilibrium
- Thus when looking for Nash equilibria, we can ignore all strictly dominated actions

Finding Nash equilibria: Example

- B is strictly dominated by T
- Thus an action pair is a Nash equilibrium of the game if and only if it is a Nash equilibrium of

- In this game, C strictly dominates R
- Thus having eliminated B, we can eliminate R
- Now M strictly dominates T
- Finally, C strictly dominates L

Strictly dominated actions and Nash equilibrium

Example

	L	С	R
Т	2,2	1,2	2,1
Μ	3,0	2,1	1,0
В	1,4	0,0	1,3

Conclusion: Unique Nash equilibrium of game is (M, C)

Lessons:

- after a strictly dominated action is eliminated, actions that were not previously strictly dominated may become strictly dominated
- every Nash equilibrium survives iterative elimination of strictly dominated actions

Strictly dominated actions and Nash equilibrium

Example

	L	С	R
Т	2,2	1,2	2,1
Μ	3,0	2,1	1,0
В	1,4	0,0	1,3

Conclusion: Unique Nash equilibrium of game is (M, C)But example is atypical:

- in most games, some action profiles that survive iterated elimination of strictly dominated actions are not Nash equilibria
- in many games, no action of any player is strictly dominated

Weakly dominated actions

Player *i*'s action b_i weakly dominates her action b'_i if

- b_i is at least as good as b'_i for player i regardless of the other players' actions and
- b_i is better than b'_i for some list of the other players' actions.

Definition

In a strategic game $\langle N, (A_i)_{i \in N}, (\succeq_i)_{i \in N} \rangle$, player *i*'s action $b_i \in A_i$ weakly dominates her action $b'_i \in A_i$ if

 $(a_{-i}, b_i) \succeq_i (a_{-i}, b'_i)$ for every list a_{-i} of the other players' actions

and

 $(a_{-i}, b_i) \succ_i (a_{-i}, b'_i)$ for some list a_{-i} of the other players' actions

Best responses Ex

Exploration Domination

Symmetric games

Weakly dominated actions: Example

•
$$u_1(T,L) = 1 > 0 = u_1(B,L)$$

•
$$u_1(T,R) = 0 = u_1(B,R)$$

So T weakly dominates B but does not strictly dominate B

Can a weakly dominated action be used by a player in a Nash equilibrium?

Yes! (B, R) is a Nash equilibrium of this game.

Dominated actions: summary

- A strictly dominated action is not a best response to any list of actions of the other players
- So no strictly dominated action is used in a Nash equilibrium
- Every Nash equilibrium survives iterated elimination of strictly dominated actions
- An action that is weakly dominated but not strictly dominated *is* a best response to *some* list of actions of the other players
- A weakly dominated action may be used in a Nash equilibrium

Symmetric games

- Two players
- $A_1 = A_2$
- (a₁, a₂) ≿₁ (b₁, b₂) if and only if (a₂, a₁) ≿₂ (b₂, b₁) for all a ∈ A and b ∈ A
- → there exist payoff representations of preferences such that u₁(a₁, a₂) = u₂(a₂, a₁) for all a ∈ A
- Example:

$$\begin{array}{c|c}
L & R \\
L & w, w & x, y \\
R & y, x & z, z
\end{array}$$

Nash equilibrium

- Symmetric equilibrium: a₁^{*} = a₂^{*}
- Does symmetric game necessarily have symmetric equilibrium?
- No:

Decision problems

Best responses

Symmetric games

- If players are identical, how can asymmetric equilibrium be realized?
 - How does a player know which action she should choose?