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1. Two firms produce goods that are partially (not perfectly) substitutable. When the
prices set by the firms are p1 and p2 (nonnegative numbers), the demand faced by
firm 1 is 10 − p1 + 2p2 and the demand faced by firm 2 is 20 − p2 + 1

2
p1. Each firm’s

cost of production is zero.

(a) [3] Model the competition between the firms as a strategic game in which each
firm chooses a price.

Solution: Players The two firms

Actions The set of actions of each firm is the set of nonnegative numbers

Payoffs When the prices are (p1, p2) the payoff of firm 1 is

p1(10− p1 + 2p2)

and the payoff of firm 2 is

p1(20− p2 + 1
2
p1).

(b) [7] Find a Nash equilibrium of the game.

Solution: Firm 1’s payoff function is p1(10− p1 + 2p2), so that its best response
function is b1(p2) = 5 + p2.
Firm 2’s payoff function is p2(20−p2 + 1

2
p1), so that its best response function

is b2(p1) = 10 + 1
4
p1.

A pair of prices (p∗1, p
∗
2) is a Nash equilibrium if and only if b1(p∗2) = p∗1 and

b2(p∗1) = p∗2. Solving these two equations simultaneously yields (p∗1, p
∗
2) =

(20, 15). Thus the game has a unique Nash equilibrium, (20, 15).
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2. [14] For what ranges of values of the numbers a and b does the following strategic
game have a mixed strategy Nash equilibrium in which each player assigns positive
probability only to her actions A and B? For values of a and b for which the game has
such an equilibrium, specify the equilibrium.

A B C
A 2, 2 4, 0 4, 1
B 4, 1 3, 3 4, 1
C 0, 4 a, 4 b, 4

Solution: For player 1’s expected payoffs to A and B to be the same, we need q = 1
3

(the probability that player 2 uses A), and for player 2’s expected payoffs to A
and B to be the same, we need p = 1

2
(the probability that player 1 uses A).

This mixed strategy pair is a mixed strategy Nash equilibrium if each player’s
expected payoff to C is no more than her expected payoff to A and B.

Given q = 1
3
, player 1’s expected payoff to A and B is 10

3
and her expected payoff

to C is 2
3
a. Thus for the game to have a mixed strategy Nash equilibrium in which

player 1 assigns positive probabilities only to A and B we need 2
3
a ≤ 10

3
, or a ≤ 5.

Given p = 1
2
, player 2’s expected payoff to A and B is 3

2
and her expected payoff

to C is 1.

Thus the game has a mixed strategy Nash equilibrium in which each player assigns
positive probability only to A and B if and only if a ≤ 5; there is no restriction
on b.

3. [12] Consider the citizen-candidate model of electoral competition.

[Reminder: In the citizen-candidate model, a position is a number. There is a con-
tinuum of citizens, each of whom has a favorite position. The distribution of favorite
positions has a unique median, denoted m. Each citizen chooses whether to stand as a
candidate; the citizens make their decisions simultaneously. Each citizen votes for the
candidate whose position is closest to the citizen’s favorite position. The candidate
who obtains the most votes wins. (If t candidates are tied for the largest number of
votes, each of them wins with probability 1/t.) If no citizen stands as a candidate,
every citizen’s payoff is K < b − c. Otherwise, each citizen’s payoff is the negative of
the absolute value of the distance between her favorite position and the position of the
winner, minus c if she is a candidate and plus pb if she is a candidate and wins with
probability p.]

Assume 0 ≤ b < c. Find the set of values of d such that the game has a Nash
equilibrium in which exactly one candidate enters and does so at m− d.

Solution: The payoff of a citizen who is the only candidate to enter and does so at
m−d is b− c. If she exits, her payoff is K, which is less than b− c by assumption.

Consider a citizen whose favorite position x satisfies |m − x| > d. If this citizen
enters, she loses and does not affect the outcome, so it is optimal for her to stay
out.
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Finally, consider a citizen whose favorite x satisfies |m − x| < d. If this citizen
enters, she wins and obtains the payoff b− c. The citizen with the most to gain is
the one whose favorite position is close to m+ d. Her payoff if she does not enter
is close to −2d (the position of the winner is m− d) and her payoff if she enters
is b − c (because in this case she wins). Thus her payoff from entering is higher
than her payoff from staying out if b− c > −2d. Thus if d ≤ 1

2
(c− b), no citizen

can gain by entering.

We conclude that the game has a Nash equilibrium in which a single citizen with
favorite position m− d enters if 0 ≤ d ≤ 1

2
(c− b).

4. [10] Consider Cournot’s model of duopoly in which the inverse demand function is
defined by P (Q) = α − Q if Q ≤ α, 0 otherwise, and the cost function of firm i is q2

i

for i = 1, 2. (Note the square in the cost function.)

Is the output α/3 strictly dominated? Either find an output that strictly dominates it
or show that no other output strictly dominates it.

Solution: Yes, it is strictly dominated by the output α/4, the monopoly output. For
α− qi − qj ≥ 0 (so that the price is nonnegative), the payoff of firm i is

{
qi(α− qi − qj)− q2

i = qi(α− 2qi − qj) if qj ≤ α− qi
−q2

i if qj > α− qi

(where j is the other firm) so its payoff if qi = α/3 is

{
(α/3)(α/3− qj) if qj ≤ 2α/3

−α2/9 if qj > 2α/3

and its payoff if qi = α/4 is

{
(α/4)(α/2− qj) if qj ≤ 3α/4

−α2/16 if qj > 3α/4.

qj →0 α/2α/3

α/9
α/8 (α/4)(α/2− qj)

(α/3)(α/3− qj)

The second payoff exceeds the first for all values of q2, so the output α/4 strictly
dominates the output α/3.
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5. Consider a first-price “all-pay” sealed-bid auction with three bidders.

Each bidder knows her own valuation, but not the other bidders’ valuations; she be-
lieves that each of the other bidder’s valuations is uniformly distributed from 0 to 1.
Call a bidder with valuation v a “bidder of type v”.

The bidder who submits the highest bid is the winner. (You can ignore ties.) If a
bidder of type v bids b and wins the auction then her payoff is v − b; if she does not
win her payoff is −b. (That is, she pays b whether or not she wins.)

(a) [8] Suppose that for some number β > 0 the bid of each type v2 of player 2 is
βv3

2 and the bid of each type v3 of player 3 is βv3
3. (In both cases, note that the

valuations are cubed.) Find the expected payoff of type v1 of player 1 when she
bids b1, for any 0 ≤ v1 ≤ 1.

Solution: Given the bidding functions of players 2 and 3, each of their bids is
uniformly distributed from 0 to β. Thus

• if player 1 bids more than β she wins and obtains the payoff v1 − b1

• if player 1 bids at most β then the probability with which she wins is the
probability that both of the other players’ bids are less than b1, which is
(b1/β)1/3(b1/β)1/3 = (b1/β)2/3, so that her expected payoff is (b1/β)2/3v1−
b1.

So the payoff of type v1 of player 1 when she bids b1 is

{
(b1/β)2/3v1 − b1 if b1 ≤ β

v1 − b1 if b1 > β.

(b) [7] Does the auction have an equilibrium in which the bid of each player i is βv3
i

for some value of β > 0? (Again, note the cube.) If so, find the value of β.

Solution: The maximizer of (b1/β)2/3v1 − b1 satisfies 2
3
b
−1/3
1 v1/β

2/3 − 1 = 0, or
b1 = (2

3
v1/β

2/3)3.
In particular, if β = (2

3
)3/β2, or β = 2

3
, then player 1’s optimal bidding

function is 2
3
v3

1. The same considerations apply to the other players, so the
auction has a Nash equilibrium in which the bid of each player i is 2

3
v3
i .

6. (a) [7] Does the ultimatum game have a Nash equilibrium with an outcome that differs
from the outcome of the unique subgame perfect equilibrium? Either specify
such an equilibrium (be sure to give a pair of strategies) or show that no such
equilibrium exists. [Reminder: the ultimatum game is a two-player extensive
game with perfect information in which player 1 chooses an amount of money x,
with 0 ≤ x ≤ 1, to offer to player 2, and then player 2 either accepts the offer, in
which case player 1’s payoff is 1−x and player 2’s payoff is x, or rejects the offer,
in which case both players’ payoffs are zero.]

Solution: Yes: For example, for any number z ∈ (0, 1] player 1 offers z and
player 2’s strategy accepts any offer of at least z and rejects all other offers.
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(b) [10] Consider an extension of the ultimatum game in which if player 2 rejects
an offer of player 1, she makes a counteroffer, which player 1 can either accept
or reject. Formulating a counteroffer takes some time, and the size of the pie
available after player 2 rejects player 1’s initial offer is smaller than it is initially
— k < 1 rather than 1.

More precisely, suppose that player 1’s offer in the first period is x (0 ≤ x ≤ 1). If
player 2 accepts this offer, then the game ends and the payoff of player 1 is 1 − x
and the payoff of player 2 is x. If player 2 rejects player 1’s offer, then player 2
choose an amount y to make as a counteroffer (0 ≤ y ≤ k, where 0 < k < 1). If
player 1 accepts this counteroffer, then the game ends and the payoff of player 1
is y and the payoff of player 2 is k − y. If player 1 rejects player 2’s offer, the
game ends and both players’ payoffs are zero.

Find all the subgame perfect equilibria of this extensive game with perfect infor-
mation. (Be sure to specify the players’ strategies!)

Solution: The subgame starting with a counteroffer by player 2 is an ultimatum
game with pie size k. So it has a unique subgame perfect equilibrium in
which player 2 offers 0 and player 1 accepts all offers. The outcome of this
equilibrium is that player 1’s payoff is 0 and player 2’s payoff is k.
In the subgame following an offer of x by player 1, if player 2 accepts the offer
her payoff is x whereas if she rejects it her payoff is k. Thus she optimally ac-
cepts the offer if x > k, rejects it if x < k, and is indifferent between accepting
and rejecting the offer if x = k. So in any subgame perfect equilibrium she
either accepts an offer x if and only if x ≥ k or accepts an offer if and only if
x > k. In the first case, player 1’s best offer is k, which player 2 accepts, so
that the players’ payoffs are 1 − k and k. In the second case, player 1 has no
optimal offer.
Thus the game has a unique subgame perfect equilibrium in which

• player 1’s strategy is to offer k at the start of the game and accept all
offers after any history in which player 2 rejected player 1’s initial offer

• player 2’s strategy is to accept an offer x of player 1 if and only if x ≥ k
and to counteroffer 0 if she rejects player 1’s initial offer.

7. [10] Find the range of values of the discount factor δ (in terms of a and b) for which
the strategy pair in which both players use the strategy Unrelenting punishment is a
Nash equilibrium of the following Prisoner’s Dilemma, where a > b > 1. [The strategy
Unrelenting punishment selects the action C initially and after any history in which
the other player chose C in every previous period; after any other history, it selects D.]

C D
C b, b 0, a
D a, 0 1, 1

How does the range change as a increases?



page 6

Solution: The condition for a player not to want to deviate is

b

1− δ
≥ a+

δ

1− δ

or

δ ≥
a− b
a− 1

.

As a increases, this lower bound increases. That is, if the payoff to D increases
then the players need to be more patient to sustain cooperation as a Nash equi-
librium.

8. Consider the following extensive game (with imperfect information).

RL

2, 0

M

1

R

2, 2

L

1, 1

R

3, 3

L

1, 1

2

(a) [3] Does the game have a Nash equilibrium in which player 2 chooses L? If so,
specify the equilibrium.

Solution: If player 2 chooses L then player 1’s best action is L. And if player 1
chooses L then L is optimal for player 2. (R is also optimal for player 2.) So
(L,L) is a Nash equilibrium of the game.

(b) [4] Does the game have a weak sequential equilibrium in which player 2 chooses
L?

Solution: For every belief of player 2 at her information set, the only optimal
action is R, so the game has no weak sequential equilibrium in which player 2
chooses L.

(c) [5] Does the game have a weak sequential equilibrium in which player 2 chooses
R?

Solution: If player 2 chooses R then player 1’s optimal action is R. Conse-
quently in a weak sequential equilibrium player 1’s belief at her information
set is (0, 1) (that is, she assigns probability 1 to R), in which case R is opti-
mal for her. Thus the game has a weak sequential equilibrium in which the
strategy pair is (R,R) and player 2’s belief assigns probability 1 to R.


