Economics 316

Martin J. Osborne

Solutions to problems for Tutorial 8

1. Yes, the strategy profile in which player *i* bids \overline{v} regardless of her valuation and all the other players bid \underline{v} regardless of her valuation is a Nash equilibrium. Player *i* wins and pays the price \underline{v} . Thus she obtains a nonnegative payoff regardless of her valuation, and given the other players' strategies cannot do better. The other players lose; if any of them changes her bid to one that wins, then her payoff is nonpositive, because her bid must be at least \overline{v} and her valuation is at most \overline{v} .

The outcome is efficient only if player *i*'s valuation is the highest valuation; the probability of this event is 1/n, where *n* is the number of bidders.

- 2. (a) A player's bidding her valuation weakly dominates all other bids, by the same argument as for the case of risk-neutrality.
 - (b) The analysis follows the lines of the analysis for the risk-neutral case in class. If player 2's bid is βv₂, then her bids are uniformly distributed on [0, β]. Suppose that player 1 bids b₁. Then her payoff is

$$\begin{cases} (b_1/\beta)(v_1-b_1)^{1/m} & \text{if } b_1 < \beta \\ (v_1-b_1)^{1/m} & \text{if } b_1 > \beta. \end{cases}$$

The maximizer of this function is

$$\frac{m}{m+1}v_1$$

if this amount is at most β . The argument for player 2 is symmetric. Thus the auction has an equilibrium in which each player *i* bids

 $\frac{m}{m+1}v_i$

when her valuation is v_i .

(c) If the winner of the second-price auction has valuation v, then she pays the expected value of the other player's valuation conditional on that valuation being less than v, which is $\frac{1}{2}v$.

If the winner of the first-price auction has valuation v, then she pays her bid, which is (m/(m+1))v.

If m = 1 (risk-neutral bidders), then the two prices are the same. But if m > 1 (risk-averse bidders), then the price paid in the first-price auction is higher.

The distribution of valuations is the same in the two auctions, so the probability that a bidder with any given valuation wins is the same in both auctions. Hence the auctioneer's expected revenue is greater in a first-price auction than it is in a secondprice auction.