ECO316: Applied game theory Lecture 7

Martin J. Osborne

Department of Economics University of Toronto

2017.10.19

© 2017 by Martin J. Osborne

Table of contents

Collective choice

Voting Two candidates Three candidates Alternative voting systems Approval voting Single transferable vote

Committee decision-making

Voting under imperfect information

Juries

- Group of people has to choose one of several actions
- Group members' preferences differ
- How should action of group be selected?

Two actions

A ≻ B	$B \succ A$		
$B \succ A$	A ≻ B	B ≻ A	
A ≻ B		B≻ A	
A ≻ B	$A \succ E$		
А	≻ B	A ≻ B	

- Only information we have is whether each individual prefers A or B, not intensity of their preference
- Knowing option an individual likes best tells us their entire preference relation (because only two alternatives)

Two actions

A ≻ B	$B \succ A$		
$B \succ A$	A ≻ B	B ≻ A	
A ≻ B		B ≻ A	
A ≻ B	A≻ B		
А	≻ B	A ≻ B	

 If we know individuals' preferences and want to treat A and B symmetrically and individuals equally, natural to select action favored by majority

Two actions

$A \succ B$	$B \succ A$		
$B \succ A$	A ≻ B	B ≻ A	
A ≻ B		B≻ A	
A ≻ B	$A \succ E$		
A	≻ B	A ≻ B	

- But typically we don't know individuals' preferences
- Could ask each individual to name an option (vote for an option), and then select action with most votes
- What are the strategic properties of this mechanism?

Majority rule: two candidates

- Two candidates, A and B
- k citizens, each of whom votes for A or votes for B
- Winner is candidate who obtains the most votes

Strategic game

- Players: The k citizens
- For each player,
 - Actions: Vote for A, vote for B
 - Preferences: For player who prefers A to B,

A gets most votes \succ A and B tie \succ B gets most votes

and for player who prefers *B* to *A*,

B gets most votes \succ **A** and **B** tie \succ **A** gets most votes

Majority rule: two candidates

- Suppose citizen i prefers A to B
- How should she vote?
- Compare outcome of i's voting for A and voting for B:

		Among other citizens' votes:				
		A wins A wins A and B			B wins	B wins
		by \geq 2	by 1	B tie	by 1	by \geq 2
Citizen <i>i</i> vote for <i>A</i> vote for <i>B</i>	Α	Α	А	tie	В	
	Α	tie	В	В	В	

Election outcomes

- For citizen i, voting for A weakly dominates voting for B
- Similarly, for citizen who prefers B to A, vote for B weakly dominates vote for A

Majority rule: two candidates

Nash equilibrium

- One Nash equilibrium: every citizen votes for her favorite candidate
 - Only Nash equilibrium in which no citizen uses a weakly dominated action
- Other Nash equilibria?
 - Yes: for example, all citizens vote for A
- Problem asks you to find all Nash equilibria

A-C

B-C

A - B -

Majority rule: three candidates

Candidates A, B, and C

vote for A

vote for C

- Consider citizen who ranks $A \succ B \succ C$
- Is her voting for C weakly dominated?
- Effects of switching vote from C to A:

A - B

В

Winning candidate (X - Y means tie between X and Y)

A-B

B-C

Voting for A weakly dominates voting for C

С

С

Juries

Majority rule: three candidates

Dominated actions

- For citizen who ranks A ≻ B ≻ C, is voting for B weakly dominated?
- Suppose you rank NDP >> Liberal >> Conservative and the polls say:

Federal vote intention

Q. If a federal election were held tomorrow, which party would you vote for?

January 21, 2010

Majority rule: three candidates

Dominated actions

- For citizen who ranks A ≻ B ≻ C, voting for B is not weakly dominated
- If votes among other citizens are, for example,

candidates	other citizens' votes
A	15
В	30
С	31

then

- vote for $A \Rightarrow C$ wins
- vote for $B \Rightarrow B$ and C tie
- That is, citizen is better off voting for B than for A
- "Strategic" voting is not "sincere"

Majority rule: three candidates

Nash equilibrium

- Voting game has many Nash equilibria
- For example, any action profile in which the winning margin is 3 or more is a Nash equilibrium
 - no change in any player's action changes the outcome
- And, for any preferences, in some equilibria at least one player does not vote for her favorite candidate and does not use a weakly dominated action

Majority rule: summary

Two candidates

- Voting for less preferred candidate is weakly dominated
- Many Nash equilibria, but only one in which no one uses a weakly dominated strategy: everyone votes for their favorite candidate

Three candidates

- Voting for least preferred candidate is weakly dominated
- But voting for any other candidate is not weakly dominated
- Many Nash equilibria, including ones in which some citizens do not vote for their favorite candidate and do not use a weakly dominated action

- Many schemes have been proposed with the aim of improving on plurality rule
- Two such schemes allow voters to express more information than simply naming a single candidate:
 - approval voting
 - single-transferable vote

Approval voting

- Each citizen votes for ("approves of") a set of candidates rather than a single candidate
- The candidate with the most votes wins
- Weakly dominated actions:
 - vote that includes least favorite candidate
 - vote that does not include favorite candidate
- So vote that is not weakly dominated
 - does not include least favorite candidate
 - includes favorite candidate
- ► Three candidates: if A ≻ B ≻ C then only strategies {A} and {A, B} are not weakly dominated

Approval voting

One situation in which system is intended to work well

- If every citizen votes for her favorite candidate, C wins
- But citizens on left are almost indifferent between A and B, and together are more numerous than supporters of C
- Idea: all citizens on left approve {A, B} and citizens on right approve {C}, so that A and B tie for first place
- But as for majority rule, game has many Nash equilibria

Single transferable vote

- Each voter ranks candidates
- Method for determining winner

Single transferable vote

Example:

·		# of voters			rankings		
	-		6		A, B	, C, D	
			5		В, А	, C, D	
			3		С, Е	8, A, D	
			1		D, C	, A, B	
Procedure:							
			vote	s fo	r		
	round	Α	В	С	D		
	1	6	5	3	1	Eliminate D	
	2	6	5	4		Eliminate C	
	3	7	8			Winner is <i>B</i>	

By contrast, under plurality rule, if each player votes for her favorite candidate, *A* wins

Single transferable vote

- Can formulate as strategic game: action of voter is ranking
- Analysis of Nash equilibria is difficult
- No simple general results (Problem Set has example)

Summary

- Many alternatives to plurality voting exist
- No system is perfect
- For some configurations of preferences, systems like approval voting or the single transferable vote generate outcomes that reflect voters' preferences better than outcome of plurality rule, at least for some type of "sincere voting"

Juries

Committee decision-making

- Group of n people; assume n is odd
- Have to choose a policy—a number
- Each person *i* has favorite policy, x_i^*
- Each person *i* prefers *y* to *z* if $|x_i^* y| < |x_i^* z|$

Procedure

- Each person names a policy
- The median named policy is selected

Strategic game

- Players: the n people
- For each player i
 - actions: set of possible policies (numbers)
 - ▶ payoffs: -|x_i* m(a₁,..., a_n)|, where m(a₁,..., a_n) is the median policy named by the players

Domination

- Compare outcome of *i*'s naming x_i^{*} with her naming some other policy y > x_i^{*}
- Suppose n = 3, denote other players' actions a and b, and assume a < b</p>
- Effect of naming y rather than x_i^{*}:

Domination

- In every case, naming y rather than x_i^{*} either does not affect the outcome or makes the outcome worse for i
 - There is no benefit from exaggeration (why?)
- So i's naming x^{*}_i weakly dominates her naming y
- Same argument applies if y < x^{*}_i, so i's action x^{*}_i weakly dominates all her other actions
- Same argument applies also if n > 3
 - in that case, take a and b to be the two central positions among the other players' actions
- Thus in all cases i's action x^{*}_i weakly dominates all her other actions

Nash equilibrium

- x^{*}_i weakly dominates every other action for every player i
- ⇒ one Nash equilibrium is for every player *i* to name her favorite action
- ⇒ this Nash equilibrium is the only equilibrium in which no player uses a weakly dominated action
 - If we think of the game as one in which we ask the players to report their favorite policies, *truth-telling* is an equilibrium
 - Do the same conclusions hold if the *mean* rather than the *median* of the actions is the outcome? [problem]

- So far, voters differ in their preferences
- Suppose instead that the differ in their information
- Economy is either in state a or state b
- All voters agree that candidate A is best in state a and candidate B is best in state b
- Assume payoffs
 - in state a: 1 if A elected, 0 if B elected
 - in state b: 0 if A elected, 1 if B elected
- Some voters know the state, others do not
- How do citizens vote in equilibrium?

Assume two citizens:

- citizen 1 knows the state
- citizen 2 does not know the state; she believes the state is a with probability 0.9 and b with probability 0.1
- Each citizen can
 - vote for candidate A
 - vote for candidate B
 - abstain
- To model this situation, we need to generalize the notion of a strategic game to allow for imperfect information

Strategic game with imperfect information

- Players: the two citizens
- Citizen 1 has two possible *types*: she may know state is a or she may know state is b
- Citizen 2 has only one possible type: she doesn't know state; she believes state is a with probability 0.9
- Each citizen has three actions, vote for A, vote for B, and abstain
- Payoffs of each player:

Nash equilibrium

- The action of each type of citizen 1 is a best response to the action of citizen 2
- The action of citizen 2 is a best response to the actions of the two types of citizen 1, given citizen 2's belief about the probabilities of states a and b

Voting under imperfect information: Nash equilibrium Citizen 1

- Knows state
- If state is a, payoffs

- So voting for A strictly dominates voting for B and weakly dominates abstention
- Similarly, if state is b, voting for B strictly dominates voting for A and weakly dominates abstention
- So if no player uses weakly dominated strategy, citizen 1 votes for A in state a and for B in state b

Voting under imperfect information: Nash equilibrium

Citizen 2

- Given that citizen 1 votes for A in state a and for B in state b, what is citizen 2's optimal action?
- Payoffs:

Vote for A $0.9 \cdot 1 + 0.1 \cdot 0.5 = 0.95$ Vote for B $0.9 \cdot 0.5 + 0.1 \cdot 1 = 0.46$ Abstain $0.9 \cdot 1 + 0.1 \cdot 1 = 1$

So optimal action is to abstain—even though she is quite sure state is a

Conclusion

 Game has only one equilibrium in which no player uses a weakly dominated action:

Citizen 1 votes for A when state is a and votes for B when state is b

Citzen 2 abstains

- Citizen 2, uninformed of state, suffers from swing voter's curse: if she votes, whenever her vote affects the outcome it affects it adversely
 - if she votes for A then her vote makes no difference if state is a (citizen 1 votes for A in any case) and induces a worse outcome if state is b (in which best candidate is B)
 - if she votes for B then her vote makes no difference if state is b (citizen 1 votes for B in any case) and induces a worse outcome if state is a (in which best candidate is A)

Conclusion

- If citizen 2 were the only voter, she would definitely vote for A
- But in the presence of citizen 1, she has to consider when her vote makes a difference
- Similar considerations affect analysis of other situations in which some players are imperfectly informed

Juries

- ► *n* jurors
- Before seeing evidence, each juror believes defendant is guilty with probability π
- Assume $\pi = \frac{1}{2}$
- All jurors share same goal: convict guilty person, acquit innocent one
- But jurors may interpret evidence differently

Juries

Juries

Information structure

- ► Model each juror as receiving a *signal* from the evidence
- Signals determined by random process
- If defendant guilty, more likely to get guilty signal; if defendant innocent, more likely to get innocent signal

 Given initial belief that defendant is guilty with probability ¹/₂, juror who gets signal *guilty* believes defendant is more likely to be guilty than innocent
Decision-making

- After all jurors have received their signals, each juror votes to acquit or convict
- Jurors do not share signals; they do not deliberate
- Defendant is convicted only if all jurors vote to convict

Juries

Strategic game with imperfect information

Players The n jurors

Information Each juror has two possible *types*: she may receive a *guilty* signal or an *innocent* signal

- ▶ if defendant is guilty, she receives a *guilty* signal with probability $p (> \frac{1}{2})$ and an *innocent* signal with probability 1 p
- if defendant is innocent, she receives a *guilty* signal with probability 1 q ($< \frac{1}{2}$) and an *innocent* signal with probability q

Before receiving a signal, each juror believes the defendant is guilty with probability $\frac{1}{2}$

Actions Each citizen has two actions, vote to *acquit* and vote to *convict*

Strategic game with imperfect information

Payoffs Each player's payoff is 0 if either

- the defendant is innocent and at least one juror votes to acquit (so that the defendant is acquitted)
- the defendant is guilty and every juror votes to convict (so that the defendant is convicted)

Each player's payoff is -w if the defendant is innocent and every juror votes to convict (so that the defendant is wrongly convicted)

Each player's payoff is -e if the defendant is guilty and at least one juror votes to acquit (so that the defendant is erroneously acquitted)

Questions

- What are Nash equilibria of game?
 - Difficult to determine
- Easier question: Is it a Nash equilibrium for every juror who gets a guilty signal votes to convict and every juror who gets innocent signal votes to acquit?

Collective choice	Voting	Committee decision-making	Voting under imperfect information	Juries
Juries				

Juror's decision

- Consider juror i
- Suppose that every other juror votes according to her signal

			othe	er jurors' sig	nals	
		all	n – 2		1	all
		innocent	innocent		innocent	guilty
juror i	Acquit	A	A		A	A
C	Convict	Α	Α		Α	С

Outcome (A = acquittal, C = conviction)

Concentre choice	voung con		king voung c	voung under imperieet information		
Juries: juror's decision other jurors' signals						
	all	n – 2		1	all	
	innocent	innocent		innocent	guilty	
juror i Acqu	it A	A		A	A	
Convid	ct A	A		A	С	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

luries

How should juror i vote?

Voting

Collective choice

Her action makes a difference to the outcome only if all the other jurors' signals are guilty

Collective cho	ice V	oting Com	nittee decision-mak	king Voting	/oting under imperfect information		Juries
1.00							
Juries	s: juro	or's deci	sion othe	r iurors' sic	inals		
					11015		
		all	n – 2		1	all	
		innocent	innocent		innocent	guilty	
juror i A	Acquit	A	A		A	А	
Co	onvict	А	A		A	С	

Outcome (A = acquittal, C = conviction)

- Suppose her signal is innocent
- Her expected payoff if she votes Acquit is

Pr(defendant innocent | n innocent signals) · 0

+ $Pr(defendant guilty | n innocent signals) \cdot -e$

+ Pr(defendant innocent | n - 1 innocent signals) $\cdot 0$

+ Pr(defendant guilty | n - 1 innocent signals) $\cdot -e$ + ...

+ $Pr(defendant innocent | 2 innocent signals) \cdot 0$

+ $Pr(defendant guilty | 2 innocent signals) \cdot -e$

+ Pr(defendant innocent | 1 innocent signal) · 0

+ Pr(defendant guilty | 1 *innocent* signal) $\cdot -e$

Juries: juror's decision other jurors' signals							
		all	n – 2 innocent		1 innocent	all guilty	
juror i	Acquit	A	A		Α	A	
C	onvict	A	A		А	С	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

Juries

Suppose her signal is innocent

Collective choice

Voting

Her expected payoff if she votes Convict is almost the same: Pr(defendant innocent | n innocent signals) · 0

 $+ Pr(defendant guilty | n innocent signals) \cdot -e$

+ Pr(defendant innocent | n - 1 innocent signals) $\cdot 0$

 $+ Pr(defendant guilty | n - 1 innocent signals) \cdot -e$

 $+ \dots$

 $+ \Pr(\text{defendant innocent} \mid \text{2 innocent signals}) \cdot \text{0}$

+ Pr(defendant guilty | 2 innocent signals) $\cdot -e$

+ Pr(defendant innocent | 1 *innocent* signal) · -w

+ Pr(defendant guilty | 1 innocent signal) · 0

Concerve		Joung Comm		ang voung c	inder imperieet inte	mation	Junes
Juries: juror's decision other jurors' signals							
		all	n – 2		1	all	
		innocent	innocent		innocent	guilty	
juror <i>i</i>	Acquit	A	A		A	А	
	Convict	A	A		A	С	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

luries

- Suppose her signal is innocent
- Then her expected payoff to voting Convict exceeds her expected payoff to voting Acquit if

 $Pr(defendant innocent | 1 innocent signal) \cdot -w$

+ Pr(defendant guilty | 1 innocent signal) · 0

 $> Pr(defendant innocent | 1 innocent signal) \cdot 0$

 $+ Pr(defendant guilty | 1 innocent signal) \cdot -e$

or

Collective choice

 $\begin{aligned} & \Pr(\text{defendant innocent} \mid 1 \text{ innocent signal}) \cdot -w \\ & > \Pr(\text{defendant guilty} \mid 1 \text{ innocent signal}) \cdot -e \end{aligned}$

Concerve		oung comm	intee decision-mai	ang voung c	inder imperieet inte	mation	Junes
Juries: juror's decision other jurors' signals							
		all	n – 2		1	all	
		innocent	innocent		innocent	guilty	
juror <i>i</i>	Acquit	А	А		А	Α	
	Convict	А	А		А	С	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

luries

Suppose her signal is innocent

Voting

Collective choice

Then her expected payoff to voting Convict exceeds her expected payoff to voting Acquit if Pr(defendant innocent | 1 innocent signal) · - w

 $> Pr(defendant guilty | 1 innocent signal) \cdot -e$

 $Pr(defendant innocent | 1 innocent signal) \cdot -w$

 $> (1 - Pr(defendant innocent | 1 innocent signal)) \cdot -e$

 \Leftrightarrow

 \Leftrightarrow

$$rac{w}{e} < rac{1 - \Pr(\text{defendant innocent} \mid 1 \text{ innocent signal})}{\Pr(\text{defendant innocent} \mid 1 \text{ innocent signal})}$$

	oung com		ang voung c		und our	00
Juries: juror's decision other jurors' signals						
	all	n – 2		1	all	
	innocent	innocent		innocent	guilty	
juror <i>i</i> Acquit	A	A		А	A	
Convict	A	A		А	С	
Convict	71	71	•••	71	0	

Outcome (A = acquittal, C = conviction)

Suppose her signal is *innocent*

Collective choice

Then her expected payoff to voting Convict exceeds her expected payoff to voting Acquit if

-w Pr(defendant innocent | 1 *innocent* signal)

> -e(1 - Pr(defendant innocent | 1 innocent signal))

Voting under imperfect information

Juries

$$\Leftrightarrow$$

 $\frac{w}{e} < \frac{1 - \Pr(\text{defendant innocent} \mid 1 \text{$ *innocent* $signal})}{\Pr(\text{defendant innocent} \mid 1 \text{$ *innocent* $signal})}$

Concentre enoice	voting Com		king voung c	inder imperieet inte	Julie Julie	
Juries: juror's decision other jurors' signals						
	all	n – 2		1	all	
	innocent	innocent		innocent	guilty	
juror i Acqu	uit A	A		A	A	
Convi	ct A	A		А	С	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

luries

Suppose her signal is innocent

Collective choice

Then her expected payoff to voting Convict exceeds her expected payoff to voting Acquit if

 $\frac{w}{e} < \frac{1 - \Pr(\text{defendant innocent} \mid 1 \text{$ *innocent* $signal})}{\Pr(\text{defendant innocent} \mid 1 \text{$ *innocent* $signal})}$

- ▶ 1 *innocent* signal \Rightarrow 11 *guilty* signals \Rightarrow Pr(defendant innocent | 1 innocent signal) is close to zero
 - For example, if Pr(guilty signal | defendant guilty) = Pr(innocent signal | defendant innocent) = 0.8 then

 $Pr(defendant \text{ innocent } | 1 \text{ innocent } sig.) = \frac{0.8(0.2)^{11}}{0.8(0.2)^{11} + 0.2(0.8)^{11}} \approx 0.00000095$

	oung oom		ang toung c	inder imperioet inte	ounoe		
Juries: juror's decision other jurors' signals							
	all	n – 2 innocent		1 innocent	all guilty		
	mmocern	mmocern	• • •	IIIIIOCEIII	guilty		
juror <i>i</i> Acquit	A	А		А	A		
Convict	A	A		А	С		

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

Juries

Suppose her signal is innocent

Collective choice

- Then her expected payoff to voting Convict exceeds her expected payoff to voting Acquit if
 - $\frac{w}{e} < \frac{1 \Pr(\text{defendant innocent} \mid 1 \text{ innocent signal})}{\Pr(\text{defendant innocent} \mid 1 \text{ innocent signal})}$
- So her expected payoff to voting Convict exceeds her expected payoff to voting Acquit unless w is very large compared with e
- So if every other juror votes according to her signal, a juror whose signal is *innocent* should vote *Convict* unless w is very large compared with e

	oung com		ang voung c		undalori our	100
Juries: juror's decision other jurors' signals						
	all	n – 2		1	all	
	innocent	innocent		innocent	guilty	
juror <i>i</i> Acquit	A	А		А	A	
Convict	A	А		А	С	
, ,	Innocent A A	innocent A A		innocent A A	guilty A C	

Outcome (A = acquittal, C = conviction)

Voting under imperfect information

Juries

- If her signal is guilty, a similar calculation leads to the conclusion that sher expected payoff to voting Convict exceeds her expected payoff to voting Acquit if
 - $\frac{w}{e} < \frac{1 \Pr(\text{defendant innocent} \mid 0 \text{ innocent signals})}{\Pr(\text{defendant innocent} \mid 0 \text{ innocent signals})}$

which is even closer to 0

Collective choice

So if all other jurors vote according to their signal, the remaining a juror should vote Convict regardless of her signal

Conclusion

- If all other jurors vote according to their signals, the remaining juror should vote for *conviction* regardless of her signal
- So there is no equilibrium in which all jurors vote according to their signals
 - Note that we have not determined what is an equilibrium
 - Under some conditions, the game has a mixed strategy equilibrium in which every juror who gets a guilty signal votes for conviction and every juror who gets an *innocent* signal votes for conviction with positive probability and acquittal with positive probability
 - An interesting feature of this equilibrium is that the probability that an innocent defendant is convicted increases with the size of the jury