Economics 316

Fall 2017

Martin J. Osborne

Solutions to problems for Tutorial 6

1. (a) No action of either player is strictly dominated, by the following argument.

If $3 \le a_i \le 99$ then player *i*'s payoffs to $(a_i, 2)$ and $(a_i + 1, 2)$ are both 0, so no action a_i with $3 \le a_i \le 100$ is strictly dominated by any action in the same range.

Player *i*'s payoff to (2, 2) is 2, so no action a_i with $3 \le a_i \le 100$ strictly dominates 2.

Finally, the action 2 does not strictly dominate any other action a_i because player *i*'s payoff to (2, 100) is 4 whereas her payoff to $(a_i, 100)$ is $a_i + 2 > 4$ if $a_i \le 99$ and 100 if $a_i = 100$.

- (b) In the modified game, the action 100 for each player is strictly dominated by the action 99. If $2 \le a_j \le 98$ then $u_i(99, a_j) = a_j 1 0.01(99 a_j) = 1.01a_j 1.99$ and $u_i(100, a_j) = a_j 1 0.01(100 a_j) = 1.01a_j 2$. Also, $u_i(100, 99) = 97.9$ and $u_i(99, 99) = 99$; and $u_i(100, 100) = 100$ and $u_i(99, 100) = 101$.
- 2. (a) The action *T* of player 1 is strictly dominated by the mixed strategy (0,0.7,0.3). (Notice that it is not strictly dominated by the mixed strategy $(0, \frac{1}{2}, \frac{1}{2})$, because the expected payoff of player 1 if she uses this strategy and player 2 chooses *L* is 1.5, which is less than her payoff if she chooses *T* and player 2 chooses *L*. However, the expected payoff of player 1 if she uses this strategy and player 2 chooses *R* is 3.5, greater than her payoff if she chooses *T* and player 2 chooses *R*. So if player 1 puts a little more weight on *T* her expected payoff when player 2 chooses *R* is still greater than her expected payoff when she chooses *T* and also her expected payoff when she chooses *T*. Increasing the weight on *T* to 0.7 results in a mixed strategy that strictly dominates *T*.)

- (b) Because *T* is strictly dominated, it is used with probability 0 in every mixed strategy Nash equilibrium. So we can find all the mixed strategy Nash equilibria of the game by finding the mixed strategy Nash equilibria of the 2 × 2 game that results when *T* is eliminated. This game has three mixed strategy Nash equilibria: $((1,0), (1,0)), ((0,1), (0,1)), \text{ and } ((\frac{2}{3}, \frac{1}{3}), (\frac{7}{10}, \frac{3}{10}))$. (Draw a picture of the best response functions.) Thus the whole game has three mixed strategy Nash equilibria, $((0,1,0), (1,0)), ((0,2,\frac{1}{3},\frac{1}{3}), (\frac{7}{10}, \frac{3}{10}))$.
- 3. No, the price c + 1 is not weakly dominated. If the other firm's price is c + 2, any price above c + 2 yields a profit of zero, the price c + 2yields the profit $\frac{1}{2} \cdot 2D(c + 2) = D(c + 2)$, the price c + 1 yields the profit D(c + 1), the price c yields a profit of zero, and any lower price yields a negative profit. Thus no other price yields a profit as high as the profit from c + 1 if the other firm's price is c + 2, and hence no price weakly dominates the price c + 1.