ECO316: Applied game theory Lecture 5

Martin J. Osborne

Department of Economics University of Toronto

2017.10.5

Table of contents

Expert diagnosis

Reporting a crime

Rationality and equilibrium

- Market contains consumers and experts
- Every consumer has a problem (computer broken, car rattling, furnace sputtering, tooth hurts, ...)
- Consumers unable to diagnose problem
- Experts able to diagnose problem

Reporting a crime

- But expert does not have to report correct diagnosis
- Depending on diagnosis, consumer may or may not hire expert
 - May put up with problem or fix it themselves
- ▶ What fraction of experts will report honestly? What fraction of consumers will hire experts? Could regulation improve outcome?

Model

- Each consumer's problem is *major* or *minor*
- Fraction of major problems: r

Reporting a crime

- Every expert knows whether any given problem is major or minor
- Consumers know only r
- Two possible repairs: major and minor
 - Major repair fixes both major and minor problem
 - Minor repair fixes only minor problem
- Each consumer decides whether to hire expert after hearing diagnosis
- Consumer who doesn't hire expert fixes it herself or puts up with problem

Payoffs

Experts For major problem, sell and perform major repair: π^* For minor problem,

sell minor repair: $\pi < \pi^*$ sell *major* repair: $\pi' > \pi$

Consumers Major repair by expert costs E Fixing major problem herself costs E' > EMinor repair by expert costs I < EFixing minor problem herself costs I' > I

> Assume I' < E (fixing minor problem yourself is cheaper than having expert do major repair)

Reporting a crime

Assumptions

- consumer always hires expert who recommends minor repair
 - I is smallest cost consumer can possibly pay
- expert always recommends major repair for major problem
 - minor repair does not fix major problem

Strategic game

```
Players Expert and consumer
```

Actions Expert: Honest (diagnose minor problem as minor), Dishonest (diagnose minor problem as major)

Consumer: Accept (hire expert whatever their diagnosis), Reject (don't hire expert who diagnoses major problem)

Payoffs

Consumer

Daigast

	Accept	Nejeti
Honest	$r\pi^* + (1-r)\pi, -rE - (1-r)I$	$(1-r)\pi, -rE' - (1-r)I$
ishonest	$r\pi^* + (1-r)\pi', -E$	0, -rE' - (1-r)I'

1 acant

Expert Honest | Dishonest | Expert

Application: expert diagnosis

Nash equilibria

Consumer

Expert's best responses:

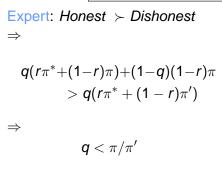
- Consumer chooses Accept ⇒ Dishonest ≻ Honest
- Consumer chooses Reject ⇒ Honest ≻ Dishonest

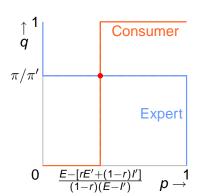
Consumer's best responses:

- Expert chooses Honest ⇒ Accept ≻ Reject
- ▶ Expert chooses Dishonest ⇒
 - ▶ if E < rE' + (1 r)I' then Accept > Reject⇒ pure strategy Nash equilibrium (*Dishonest*, *Accept*)
 - ▶ if E > rE' + (1 r)I' then Reject > Accept ⇒ no pure strategy equilibrium

Cost of major repair > expected cost of self-repair

Mixed strategy equilibrium when E > rE' + (1 - r)I'



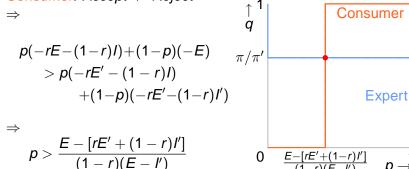


Consumer

Application: expert diagnosis

Cost of major repair > expected cost of self-repair

Mixed strategy equilibrium when E > rE' + (1 - r)I'



Cost of major repair > expected cost of self-repair

Mixed strategy equilibrium when E > rE' + (1 - r)I'

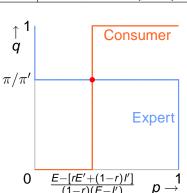
Consumer

Accept
$$(q)$$
 Reject $(1-q)$

Honest (p) $r\pi^* + (1-r)\pi$, $-rE - (1-r)I$ $(1-r)\pi$, $-rE' - (1-r)I$

Dishonest $(1-p)$ $r\pi^* + (1-r)\pi'$, $-E$ 0 , $-rE' - (1-r)I'$

Unique Nash equilibrium with
$$p=rac{E-[rE'+(1-r)l']}{(1-r)(E-l')}$$
 $q=\pi/\pi'$



Mixed strategy equilibrium when E > rE' + (1 - r)I'

$$\rho = \frac{E - [rE' + (1 - r)I']}{(1 - r)(E - I')}$$
$$q = \pi/\pi'$$

We have p > 0 and 0 < q < 1. Also

$$\rho = \frac{E - [rE' + (1 - r)I']}{(1 - r)(E - I')} = 1 - \frac{r(E' - E)}{(1 - r)(E - I')}$$

so p < 1.

Hence equilibrium in which

- some experts are honest, some dishonest
- some consumers accept major diagnoses ("credulous"), some reject them ("wary")

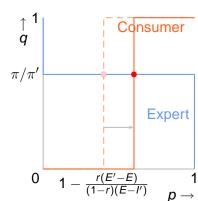
Reporting a crime

Mixed strategy equilibrium: comparative statics

prob. expert honest =
$$p = 1 - \frac{r(E' - E)}{(1 - r)(E - I')}$$

prob. consumer accepts major diagnosis $=q=\pi/\pi'$

- Major problems less common (more reliable cars) ⇒ r ↓
 - $\Rightarrow p \uparrow, q \text{ unchanged}$
 - ⇒ more experts honest, consumer behavior unchanged
 - intuition: major problems less common ⇒ consumer has less to lose from ignoring expert's advice, so probability of expert being honest must rise for her advice to be heeded

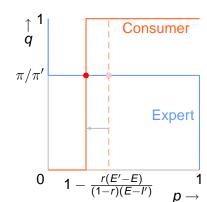


Mixed strategy equilibrium: comparative statics

prob. expert honest =
$$p = 1 - \frac{r(E' - E)}{(1 - r)(E - I')}$$

prob. consumer accepts major diagnosis $=q=\pi/\pi'$

- Major repairs less expensive relative to minor ones (technical advance?) ⇒ E ↓
 - $\Rightarrow p \downarrow, q \text{ unchanged}$
 - ⇒ fewer experts honest, consumer behavior unchanged
 - ▶ intuition: major repairs less costly ⇒ consumer has more to lose from ignoring expert's advice, so she heeds the advice even if experts are less likely to be honest

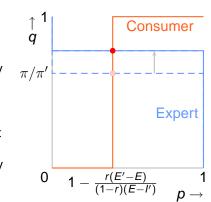


Mixed strategy equilibrium: comparative statics

prob. expert honest =
$$p = 1 - \frac{r(E' - E)}{(1 - r)(E - I')}$$

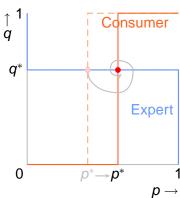
prob. consumer accepts major diagnosis $=q=\pi/\pi'$

- ▶ $\pi' \downarrow$ (better regulation, so that fraud is harder): q increases
 - $\Rightarrow q \uparrow, p \text{ unchanged}$
 - ⇒ consumers are less wary—they are more likely to accept diagnoses
 - intuition: experts have less to gain from being dishonest, so it pays for them to be dishonest only if consumers are less wary (note: fraud unchanged!)



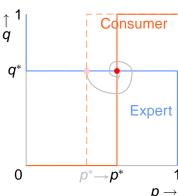
Mixed strategy equilibrium: possible dynamics

- Start at equilibrium
- ▶ Parameter changes ⇒ how is new equilibrium reached?
- r ↓ ⇒ consumer's best response function shifts right
- Given old p*, best q is now 0, so q starts decreasing
- When q decreases, best p is 1, so p starts increasing
- As long as p < new p*, best q is 0, so q decreases



Mixed strategy equilibrium: possible dynamics

- Start at equilibrium
- ▶ Parameter changes ⇒ how is new equilibrium reached?
- Once p > new p*, best q is 1, so q increases
- When q increases above q*, best p is zero, so p decreases
- Depending on adjustment speeds, new equilibrium may eventually be reached



Nash equilibrium: summary

- ► Price of major repair less than expected cost of consumer fixing problem themselves ⇒ all experts dishonest, all consumers credulous (pure strategy Nash equilibrium)
- ▶ Price of major repair greater than expected cost of consumer fixing problem themselves ⇒ some experts dishonest, some honest; some consumers credulous, some wary (mixed strategy Nash equilibrium)
- Comparative statics:
 - ► major problems less common ⇒ more experts honest, consumer behavior unaffected
 - major repairs less expensive

 fewer experts honest, consumer behavior unaffected
 - ► less profit from major repair of minor problem ⇒ consumers less wary, expert behavior unaffected

- Many people witness a crime
- One person's reporting crime to police suffices
- When deciding whether to report, each person doesn't know whether anyone else has reported
- A person who reports bears a cost c
- If the crime is reported, everyone obtains benefit v > c
- How many people report? How does number depend on size of group?

Strategic game

Players *n* individuals

Actions For each player, { Call, Don't call}

Payoffs For each player i,

$$u_i(a) = egin{cases} v-c & ext{if } a_i = Call \ v & ext{if } a_i = Don't \ call \ a_j = Call \ ext{for some } j
eq i \ 0 & ext{if } a_j = Don't \ call \ ext{for all } j \end{cases}$$

Nash equilibria

- Equilibria in pure strategies?
 - ▶ No player calls? Not NE
 - Every player calls? Not NE
 - So no symmetric NE
 - n pure NEs, in each of which exactly one player calls
 - ► How can these equilibria be realized? For an equilibrium in which player 1 calls, who is player 1?
- Look for symmetric equilibrium in mixed strategies

Mixed strategy Nash equilibrium

In mixed strategy equilibrium in which every player calls with same probability p with 0 ,

payoff if player calls = payoff if player doesn't call

$$\Rightarrow$$

$$v - c = 0 \cdot Pr\{\text{no one else calls}\} + v \cdot Pr\{\geq \text{one other person calls}\}$$

$$\Rightarrow$$

$$v - c = v \cdot (1 - Pr\{\text{no one else calls}\}),$$

$$\Rightarrow$$

$$c/v = Pr\{No \text{ one else calls}\} = (1-p)^{n-1}$$

$$\Rightarrow$$

$$p = 1 - (c/v)^{1/(n-1)}$$

Mixed strategy Nash equilibrium

Conclusion: game has a symmetric mixed strategy Nash equilibrium, in which every player calls with probability

$$p = 1 - (c/v)^{1/(n-1)}$$

(Note: this number is between 0 and 1.)

Application: reporting a crime ("volunteer's dilemma") Mixed strategy Nash equilibrium: comparative statics

$$p = 1 - (c/v)^{1/(n-1)}$$

- ▶ $n \uparrow \Rightarrow p \downarrow$: more people \Rightarrow each is less likely to call
- Probability that at least one person calls:

$$= 1 - Pr\{no one calls\}$$

$$= 1 - Pr\{i \text{ does not call}\} Pr\{no \text{ one else calls}\}$$

$$= 1 - (1 - p)(c/v)$$

Because $n \uparrow \Rightarrow p \downarrow$,

$$n \uparrow \Rightarrow \Pr\{\text{at least one person calls}\} \downarrow$$

⇒ the more people, the *less* likely the police are informed!

Summary

- n asymmetric pure strategy Nash equilibria—hard to see how they could occur
- Unique symmetric mixed strategy Nash equilibrium, in which each person calls with positive probability less than 1
- ▶ $n \uparrow \Rightarrow$ each person is less likely to call (not surprising)
- ▶ $n \uparrow \Rightarrow$ probability that at least one person calls is less likely
 - More generally, in a large group a collectively beneficial action is less likely to be taken than in a small one
 - ► For example, result suggests that a broken streetlight is less likely to be reported if it is outside an apartment block than if it is in an area of low-density housing

Rationality and equilibrium

Every player

is rational

action is best response to belief about other players' actions belief about other players' actions is correct

Nash equilibrium

Rationality and equilibrium

